首页> 外文会议>Rough Sets and Knowledge Technology; Lecture Notes in Artificial Intelligence; 4481 >Optimized Generalized Decision in Dominance-Based Rough Set Approach
【24h】

Optimized Generalized Decision in Dominance-Based Rough Set Approach

机译:基于优势的粗糙集方法中的优化广义决策

获取原文
获取原文并翻译 | 示例

摘要

Dominance-based Rough Set Approach (DRSA) has been proposed to deal with multi-criteria classification problems, where data may be inconsistent with respect to the dominance principle. However, in real-life datasets, in the presence of noise, the notions of lower and upper approximations handling inconsistencies were found to be excessively restrictive which led to the proposal of the variable consistency variant of the theory. In this paper, we deal with a new approach based on DRSA, whose main idea is based on the error corrections. A new definition of the rough set concept known as generalized decision is introduced, the optimized generalized decision. We show its connections with statistical inference and dominance-based rough set theory.
机译:已经提出了基于优势的粗糙集方法(DRSA)来处理多准则分类问题,在这种情况下,数据与优势原则可能不一致。然而,在现实的数据集中,在存在噪声的情况下,发现上下近似处理不一致的概念过于严格,导致提出了该理论的可变一致性变式。在本文中,我们处理了一种基于DRSA的新方法,其主要思想是基于纠错。引入了被称为广义决策的粗糙集概念的新定义,即优化的广义决策。我们将其与统计推断和基于优势的粗糙集理论联系起来。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号