首页> 外文会议>Rough Sets and Knowledge Technology; Lecture Notes in Artificial Intelligence; 4481 >A Memetic-Clustering-Based Evolution Strategy for Traveling Salesman Problems
【24h】

A Memetic-Clustering-Based Evolution Strategy for Traveling Salesman Problems

机译:基于模因聚类的旅行商问题演化策略

获取原文
获取原文并翻译 | 示例

摘要

A new evolution strategy based on clustering and local search scheme is proposed for some kind of large-scale travelling salesman problems in this paper. First, the problem is divided into several subproblems with smaller sizes by clustering, then the optimal or the approximate optimal tour for each subproblem is searched by a local search technique. Moreover, these tours obtained for the subproblems are properly connected to form a feasible tour based on a specifically-designed connection scheme. Furthermore, a new mutation operator is designed and used to improve each connected feasible tour further. The global convergence of the proposed algorithm is proved. At last, the simulations are made for several problems and the results indicate the proposed algorithm is effective.
机译:针对某类大型旅行商问题,提出了一种基于聚类和局部搜索的进化策略。首先,通过聚类将问题分为几个较小的子问题,然后通过局部搜索技术搜索每个子问题的最优或近似最优巡回路线。此外,基于专门设计的连接方案,将针对子问题获得的这些巡回路线正确连接以形成可行的巡回路线。此外,设计了一个新的变异算子,并使用它来进一步改善每个关联的可行路径。证明了该算法的全局收敛性。最后对几个问题进行了仿真,结果表明该算法是有效的。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号