【24h】

Rough Clustering and Regression Analysis

机译:粗糙聚类与回归分析

获取原文
获取原文并翻译 | 示例

摘要

Since Pawlak introduced rough set theory in 1982 [1] it has gained increasing attention. Recently several rough clustering algorithms have been suggested and successfully applied to real data. Switching regression is closely related to clustering. The main difference is that the distance of the data objects to regression functions has to be minimized in contrast to the minimization of the distance of the data objects to cluster representatives in k-means and k-medoids. Therefore we will introduce rough switching regression algorithms which utilizes the concepts of rough clustering algorithms as introduced by Lingras at al. [2] and Peters [3].
机译:自Pawlak于1982年引入粗糙集理论[1]以来,它已受到越来越多的关注。最近,已经提出了几种粗略的聚类算法并将其成功应用于实际数据。切换回归与聚类密切相关。主要区别在于,与将数据对象到以k均值和k质体表示的聚类代表的距离最小化相比,必须最小化数据对象到回归函数的距离。因此,我们将介绍利用Lingras等人介绍的粗糙聚类算法概念的粗糙切换回归算法。 [2]和Peters [3]。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号