【24h】

Efficient Local Protein Structure Prediction

机译:高效的局部蛋白质结构预测

获取原文
获取原文并翻译 | 示例

摘要

The methodology which was previously used with success in genomic sequences to predict new binding sites of transcription factors is applied in this paper for protein structure prediction. We predict local structure of proteins based on alignments of sequences of structurally similar local protein neighborhoods. We use Secondary Verification Assessment (SVA) method to select alignments with most reliable models. We show that using Secondary Verification (SV) method to assess the statistical significance of predictions we can reliably predict local protein structure, better than with the use of other methods (log-odds or p-value). The tests are conducted with the use of the test set consisting of the CASP 7 targets.
机译:本文将先前在基因组序列中成功用于预测转录因子新结合位点的方法应用于蛋白质结构预测。我们根据结构相似的局部蛋白质邻域序列的比对预测蛋白质的局部结构。我们使用二级验证评估(SVA)方法来选择与最可靠模型的比对。我们显示,使用二级验证(SV)方法评估预测的统计显着性,我们可以可靠地预测局部蛋白质结构,优于使用其他方法(对数或p值)。使用包含CASP 7目标的测试集进行测试。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号