【24h】

Counting All Common Subsequences to Order Alternatives

机译:计算所有通用子序列以订购替代品

获取原文
获取原文并翻译 | 示例

摘要

Many real world tasks involve the need to order alternatives based on specifications of preference over subsets of the alternatives, the problem of preference based alternative ordering. Examples include dancing championship adjudication, Eurovision Song Contest decision-making, collaborative filtering and meta-search engines. One usual solution to this problem consists in allocating scores to the alternatives and aggregating the scores to generate ranks for all alternatives. Examples of this solution include competition adjudication. Another solution involves generating ranks from different sources for all the alternatives and then adding the rank values of each alternative to give the Borda scores for this alternative. The Borda scores are then used to order the alternatives. Examples include elections and meta-search engines. The problem with these two approaches is, the scores or ranks are sometimes hard to determine (e.g., collaborative filtering). In this paper we take the view that relative preferences over alternatives (e.g., one alternative is preferred to another) are easier to obtain than absolute scores or ranks. We consider an alternative approach to this problem where, instead of using absolute scores or ranks, we use relative preferences over subsets of the alternatives to generate a total ordering that is maximally agreeable with the given preferences. We consider a set of preference specifications over all or part of the alternatives. For every pair of alternatives we calculate the probability that the two alternatives should be placed in an order. Then the Order-By-Preference algorithm is used to construct a total ordering for all the alternatives, which is guaranteed to be approximately optimal.
机译:许多现实世界的任务都涉及需要根据对替代物子集的偏好规范来对替代物进行排序,这是基于偏好的替代物排序的问题。例子包括舞蹈冠军裁决,欧洲歌唱大赛决策,协作过滤和元搜索引擎。解决此问题的一种常用方法是将分数分配给替代方案,并汇总分数以生成所有替代方案的等级。此解决方案的示例包括竞争裁决。另一个解决方案包括从所有来源为所有备选方案生成等级,然后将每个备选方案的等级值相加,以获得该备选方案的Borda分数。然后使用Borda分数对替代项进行排序。例子包括选举和元搜索引擎。这两种方法的问题在于,有时难以确定分数或等级(例如,协作过滤)。在本文中,我们认为相对于替代方案(例如,一个替代方案要优先于另一替代方案)的相对偏好比绝对分数或等级更容易获得。我们考虑解决此问题的一种替代方法,在该方法中,我们对替代子集使用相对偏好,而不是使用绝对分数或等级,以生成与给定偏好最大程度一致的总排序。我们考虑了全部或部分备选方案的一组偏好规范。对于每对备选方案,我们计算两个备选方案应放置在顺序中的概率。然后使用“按优先级排序”算法来构造所有替代项的总排序,这可以保证近似最优。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号