【24h】

Decision-Theoretic Rough Set Models

机译:决策理论粗糙集模型

获取原文
获取原文并翻译 | 示例

摘要

Decision-theoretic rough set models are a probabilistic extension of the algebraic rough set model. The required parameters for defining probabilistic lower and upper approximations are calculated based on more familiar notions of costs (risks) through the well-known Bayesian decision procedure. We review and revisit the decision-theoretic models and present new results. It is shown that we need to consider additional issues in probabilistic rough set models.
机译:决策理论粗糙集模型是代数粗糙集模型的概率扩展。通过更著名的贝叶斯决策程序,基于更熟悉的成本(风险)概念,可以计算出定义概率上下近似所需的参数。我们审查并重新审视决策理论模型,并提出新的结果。结果表明,我们需要在概率粗糙集模型中考虑其他问题。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号