首页> 外文会议>Rough Sets, Fuzzy Sets, Data Mining, and Granular Computing; Lecture Notes in Artificial Intelligence; 4482 >Image Digital Watermarking Technique Based on Kernel Independent Component Analysis
【24h】

Image Digital Watermarking Technique Based on Kernel Independent Component Analysis

机译:基于核独立分量分析的图像数字水印技术

获取原文
获取原文并翻译 | 示例

摘要

In this paper, we present a novel image digital watermarking technique based on Kernel Independent Component Analysis (KICA). Use the nice characteristic of the KICA, which can results the blind separation of nonlinearly mixed signals, the imperceptibility and robustness requirements of watermarks are fulfilled and optimized. In the proposed scheme, the watermark image is first transformed by Arnold method, and then embedded into the lowest frequency subband in DWT domain. The recovery of owner's image is turning the watermarked image into DWT domains then use KICA to extract the watermark. Finally the watermark is transformed by Arnold method again, so we can get the original watermark image. Experimental results show that the proposed method gains better performance in robustness than that of ICA with respect to traditional image processing including cropping, filtering, add noise and JPEG image compression.
机译:在本文中,我们提出了一种基于核独立分量分析(KICA)的新颖图像数字水印技术。利用KICA的优良特性,可以导致非线性混合信号的盲分离,满足并优化了水印的不可感知性和鲁棒性要求。在该方案中,水印图像首先通过Arnold方法进行变换,然后嵌入到DWT域的最低频率子带中。所有者图像的恢复将水印图像转换为DWT域,然后使用KICA提取水印。最后,再次通过Arnold方法对水印进行变换,从而得到原始的水印图像。实验结果表明,在包括裁剪,滤波,添加噪声和JPEG图像压缩在内的传统图像处理方面,该方法的鲁棒性优于ICA。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号