首页> 外文会议>Robotic and Semi-Robotic Ground Vehicle Technology >Conversion and control of an all-terrain vehicle for use as an autonomous mobile robot
【24h】

Conversion and control of an all-terrain vehicle for use as an autonomous mobile robot

机译:用作自动移动机器人的全地形车的转换和控制

获取原文
获取原文并翻译 | 示例
获取外文期刊封面目录资料

摘要

Abstract: A systematic approach to ground vehicle automation is presented, combining low-level controls, trajectory generation and closed-loop path correction in an integrated system. Development of cooperative robotics for precision agriculture at Utah State University required the automation of a full-scale motorized vehicle. The Triton Predator 8- wheeled skid-steering all-terrain vehicle was selected for the project based on its ability to maneuver precisely and the simplicity of controlling the hydrostatic drivetrain. Low-level control was achieved by fitting an actuator on the engine throttle, actuators for the left and right drive controls, encoders on the left and right drive shafts to measure wheel speeds, and a signal pick-off on the alternator for measuring engine speed. Closed loop control maintains a desired engine speed and tracks left and right wheel speeds commands. A trajectory generator produces the wheel speed commands needed to steer the vehicle through a predetermined set of map coordinates. A planar trajectory through the points is computed by fitting a 2D cubic spline over each path segment while enforcing initial and final orientation constraints at segment endpoints. Acceleration and velocity profiles are computed for each trajectory segment, with the velocity over each segment dependent on turning radius. Left and right wheel speed setpoints are obtained by combining velocity and path curvature for each low-level timestep. The path correction algorithm uses GPS position and compass orientation information to adjust the wheel speed setpoints according to the 'crosstrack' and 'downtrack' errors and heading error. Nonlinear models of the engine and the skid-steering vehicle/ground interaction were developed for testing the integrated system in simulation. These test lead to several key design improvements which assisted final implementation on the vehicle. !0
机译:摘要:提出了一种将地面车辆自动化的系统方法,该方法将低级控制,轨迹生成和闭环路径校正结合在一个集成系统中。犹他州立大学开发精密农业合作机器人需要自动化全尺寸机动车辆。 Triton Predator 8轮防滑转向全地形车因其精确的操纵能力和控制静液压传动系统的简便性而入选该项目。通过在发动机节气门上安装执行器,左右驱动器控制装置的执行器,左右驱动轴上的编码器以测量轮速以及交流发电机上的信号传感器以测量发动机速度来实现低级控制。闭环控制可保持所需的发动机转速,并跟踪左右轮速命令。轨迹生成器生成引导车辆通过一组预定的地图坐标所需的车轮速度命令。通过在每个路径线段上拟合2D三次样条,同时在线段端点处执行初始和最终方向约束,可以计算出通过这些点的平面轨迹。计算每个轨迹段的加速度和速度曲线,每个段上的速度取决于转弯半径。通过组合每个低级时间步的速度和路径曲率来获得左右车轮速度设定点。路径校正算法使用GPS位置和指南针方向信息来根据“横越”和“偏航”误差以及航向误差来调整车轮速度设定点。开发了发动机和滑移转向车辆/地面相互作用的非线性模型,以在仿真中测试集成系统。这些测试导致了多项关键设计改进,这些改进有助于最终实现车辆上的实施。 !0

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号