首页> 外文会议>Remote sensing technologies and applications in urban environments >An improved automated procedure for informal and temporary dwellings detection and enumeration, using mathematical morphology operators on VHR satellite data
【24h】

An improved automated procedure for informal and temporary dwellings detection and enumeration, using mathematical morphology operators on VHR satellite data

机译:使用VHR卫星数据上的数学形态学运算符,用于非正式和临时住宅检测和枚举的改进的自动化程序

获取原文
获取原文并翻译 | 示例

摘要

Every year thousands of people are displaced by conflicts or natural disasters and often gather in large camps. Knowing how many people have been gathered is crucial for an efficient relief operation. However, it is often difficult to collect exact information on the total number of the population. This paper presents the improved morphological methodology for the estimation of dwellings structures located in several Internally Displaced Persons (IDPs)/refugee camps, based on Very High Resolution (VHR) multispectral satellite imagery with pixel sizes of 1 meter or less including GeoEye-1, WorldView-2, QuickBird-2, Ikonos-2, Pleiades-A and Pleiades-B. The main topic of this paper is the approach enhancement with selection of feature extraction algorithm, the improvement and automation of pre-processing and results verification. For the informal and temporary dwellings extraction purpose the high quality of data has to be ensured. The pre-processing has been extended by including the input data hierarchy level assignment and data fusion method selection and evaluation. The feature extraction algorithm follows the procedure presented in Jenerowicz, M., Kemper, T., 2011. Optical data are analysed in a cyclic approach comprising image segmentation, geometrical, textural and spectral class modeling aiming at camp area identification. The successive steps of morphological processing have been combined in a one stand-alone application for automatic dwellings detection and enumeration. Actively implemented, these approaches can provide a reliable and consistent results, independent of the imaging satellite type and different study sites location, providing decision support in emergency response for the humanitarian community like United Nations, European Union and Non-Governmental relief organizations.
机译:每年,成千上万的人因冲突或自然灾害而流离失所,常常聚集在大营地中。知道有多少人被聚集对于有效的救援行动至关重要。但是,通常很难收集有关人口总数的确切信息。本文基于像素为1米或更小的甚高分辨率(VHR)多光谱卫星图像,包括GeoEye-1,提出了一种改进的形态学方法,用于评估多个内部流离失所者(IDP)/难民营中的住宅结构。 WorldView-2,QuickBird-2,Ikonos-2,Pleiades-A和Pleiades-B。本文的主要主题是通过选择特征提取算法,预处理的改进和自动化以及结果验证来增强方法。对于非正式和临时住宅的提取,必须确保高质量的数据。通过包括输入数据层次结构级别分配以及数据融合方法的选择和评估,扩展了预处理。特征提取算法遵循Jenerowicz,M.,Kemper,T.,2011中提出的过程。光学数据以循环方式进行分析,包括图像分割,几何,纹理和光谱类建模,旨在确定营地。形态处理的后续步骤已合并到一个独立的应用程序中,用于自动住宅检测和枚举。通过积极实施,这些方法可以提供可靠且一致的结果,而与成像卫星的类型和不同的研究地点的位置无关,从而为联合国,欧洲联盟和非政府救济组织等人道主义社区的应急响应提供决策支持。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号