首页> 外文会议>Reconfigurable computing: Architectures, tools and applications >Active Storage Networks for Accelerating K-Means Data Clustering
【24h】

Active Storage Networks for Accelerating K-Means Data Clustering

机译:主动存储网络,用于加速K-Means数据集群

获取原文
获取原文并翻译 | 示例

摘要

High performance computing systems are often inhibited by the performance of their storage systems and their ability to deliver data. Active Storage Networks (ASN) provide an opportunity to optimize storage system and computational performance by offloading computation to the network switch. An ASN is based around an intelligent network switch that allows data processing to occur on data as it flows through the storage area network from storage nodes to client nodes. In this paper, we demonstrate an ASN used to accelerate K-means clustering. The K — means data clustering algorithm is a compute intensive scientific data processing algorithm. It is an iterative algorithm that groups a large set of multidimensional data points in to k distinct clusters. We investigate functional and data parallelism techniques as applied to the K-means clustering problem and show that the in-network processing of an ASN greatly improves performance.
机译:高性能计算系统通常会因其存储系统的性能及其传递数据的能力而受到限制。主动存储网络(ASN)通过将计算任务转移到网络交换机上,提供了优化存储系统和计算性能的机会。 ASN基于智能网络交换机,当数据从存储节点到客户端节点流经存储区域网络时,允许对数据进行数据处理。在本文中,我们演示了用于加速K均值聚类的ASN。 K-表示数据聚类算法是计算密集型科学数据处理算法。它是一种迭代算法,将大量多维数据点分组为k个不同的群集。我们研究了应用于K均值聚类问题的功能和数据并行技术,并表明ASN的网络内处理极大地提高了性能。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号