【24h】

Adaptive Learning Rate for RBFNN

机译:RBFNN的自适应学习率

获取原文
获取原文并翻译 | 示例

摘要

Radial basis function neural networks are becoming popular in different kinds of classification problems such as pattern recognition, nonlinear identification, adaptive control, etc. In this paper, an adaptive learning rate for the learning algorithm of radial basis function neural networks is presented. The analysis considers the learning algorithm in a feedback structure in the presence of noisy perturbations. A feedback structure is used to model the learning algorithm and small gain theorem is used to inspect the stability. This results in an adaptive learning rate for robust performance.
机译:径向基函数神经网络在诸如模式识别,非线性识别,自适应控制等不同类型的分类问题中正变得越来越流行。本文提出了一种针对径向基函数神经网络的学习算法的自适应学习率。该分析在存在噪声扰动的情况下在反馈结构中考虑了学习算法。反馈结构用于学习算法的建模,小增益定理用于检查稳定性。这导致适应性学习率提高了性能。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号