【24h】

Data Mining and Model Trees Study on GDP and its Influence Factors

机译:GDP的数据挖掘与模型树研究及其影响因素

获取原文
获取原文并翻译 | 示例

摘要

In this paper we turn to several methods of data mining, such as model trees and linear regression to explore the implications in the evolution and patterns of Romanian GDP. Data used in the research is made of statistics, socio-economic indicators tables and reports from the Romanian National Institute of Statistics over the 2000-2011 period. We wanted to investigate GDP patterns apart from typical ways, through salaries level, employers' social contributions from diverse fields of economy (agriculture, industry, commerce, construction, services, financial, banking, etc.) as well as taxes on production and imports, all integrated in the data mining tasks.
机译:在本文中,我们转向几种数据挖掘方法,例如模型树和线性回归,以探讨对罗马尼亚GDP演变和模式的影响。研究中使用的数据来自统计,社会经济指标表以及罗马尼亚国家统计局2000-2011年期间的报告。除了工资的水平,雇主对来自不同经济领域(农业,工业,商业,建筑,服务,金融,银行等)的雇主的社会贡献以及生产和进口的税收,我们想调查GDP模式,全部集成在数据挖掘任务中。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号