首页> 外文会议>Quantum dots and nanostructures: synthesis, characterization, and modeling XI >Epitaxial growth of Quantum Dots on InP for device applications operating in the 1.55 μm wavelength range
【24h】

Epitaxial growth of Quantum Dots on InP for device applications operating in the 1.55 μm wavelength range

机译:InP上量子点的外延生长,用于在1.55μm波长范围内运行的设备应用

获取原文
获取原文并翻译 | 示例

摘要

The development of epitaxial technology for the fabrication of quantum dot (QD) gain material operating in the 1.55 μm wavelength range is a key requirement for the evolvement of telecommunication. High performance QD material demonstrated on GaAs only covers the wavelength region 1-1.35 um. In order to extract the QD benefits for the longer telecommunication wavelength range the technology of QD fabrication should be developed for InP based materials. In our work, we take advantage of both QD fabrication methods Stranski-Krastanow (SK) and selective area growth (SAG) employing block copolymer lithography. Due to the lower lattice mismatch of InAs/InP compared to InAs/GaAs, InP based QDs have a larger diameter and are shallower compared to GaAs based dots. This shape causes low carrier localization and small energy level separation which leads to a high threshold current, high temperature dependence, and low laser quantum efficiency. Here, we demonstrate that with tailored growth conditions, which suppress surface migration of adatoms during the SK QD formation, much smaller base diameter (13.6nm versus 23nm) and an improved aspect ratio are achieved. In order to gain advantage of non-strain dependent QD formation, we have developed SAG, for which the growth occurs only in the nano-openings of a mask covering the wafer surface. In this case, a wide range of QD composition can be chosen. This method yields high purity material and provides significant freedom for reducing the aspect ratio of QDs with the possibility to approach an ideal QD shape.
机译:用于制造工作在1.55μm波长范围内的量子点(QD)增益材料的外延技术的发展是电信发展的关键要求。在GaAs上展示的高性能QD材料仅覆盖1-1.35 um的波长区域。为了从更长的电信波长范围中获得QD好处,应该为基于InP的材料开发QD制造技术。在我们的工作中,我们充分利用了QD制造方法Stranski-Krastanow(SK)和采用嵌段共聚物光刻的选择性区域生长(SAG)。由于与InAs / GaAs相比,InAs / InP的晶格失配更低,因此与基于GaAs的点相比,基于InP的QD具有更大的直径并且更浅。这种形状导致低的载流子定位和小的能级分离,这导致高阈值电流,高温度依赖性和低激光量子效率。在这里,我们证明了通过定制的生长条件(可抑制SK QD形成过程中吸附原子的表面迁移),可以实现更小的基径(13.6nm对23nm)和更高的长宽比。为了获得不依赖应变的QD形成的优势,我们开发了SAG,其生长仅发生在覆盖晶圆表面的掩模的纳米开口中。在这种情况下,可以选择各种QD成分。此方法可产生高纯度的材料,并为降低QD的长宽比提供了极大的自由度,并有可能接近理想的QD形状。

著录项

  • 来源
  • 会议地点 San Francisco CA(US)
  • 作者单位

    DTU Fotonik, Department of Photonics Engineering, Technical University of Denmark, Orsteds Plads Bldg. 343, 2800 Kongens Lyngby, Denmark;

    DTU Fotonik, Department of Photonics Engineering, Technical University of Denmark, Orsteds Plads Bldg. 343, 2800 Kongens Lyngby, Denmark;

    DTU Cen, Center for Electron Nanoscopy, Technical University of Denmark, Building 307, 2800 Kongens Lyngby, Denmark;

    University of Rome Tor Vergata, Italy;

    DTU Fotonik, Department of Photonics Engineering, Technical University of Denmark, Orsteds Plads Bldg. 343, 2800 Kongens Lyngby, Denmark;

    DTU Nanotech, Department of Micro and Nanotechnology, Technical University of Denmark, Building 345E, 2800 Kongens Lyngby, Denmark;

    DTU Nanotech, Department of Micro and Nanotechnology, Technical University of Denmark, Building 345E, 2800 Kongens Lyngby, Denmark;

    DTU Fotonik, Department of Photonics Engineering, Technical University of Denmark, Orsteds Plads Bldg. 343, 2800 Kongens Lyngby, Denmark;

  • 会议组织
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Epitaxy; quantum dots; self-assembly; selective area growth; block copolymer lithography;

    机译:外延;量子点;自组装;选择性区域增长;嵌段共聚物光刻;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号