【24h】

Tree Network Coding for Peer-to-Peer Networks

机译:对等网络的树形网络编码

获取原文
获取原文并翻译 | 示例

摘要

Partitioning is the dominant technique to transmit large files in peer-to-peer networks. A peer can redistribute each part immediately after its download. BitTorrent combines this approach with incentives for uploads and has thereby become the most successful peer-to-peer network. However, BitTorrent fails if files are unpopular and are distributed by irregularly participating peers. It is known that Network Coding always provides the optimal data distribution, referred as optimal performance. Yet, for encoding or decoding a single code block the whole file must be read and users are not willing to read O(n2) data blocks from hard disk for sending n message blocks. We call this the disk read/write complexity of an encoding. It is an open question whether fast network coding schemes exist. In this paper we present a solution for simple communication patterns. Here, in a round model each peer can send a limited amount of messages to other peers. We define the depth of this directed acyclic communication graph as the maximum path length (not counting the rounds). In our online model each peer knows the bandwidth of its communication links for the current round, but neither the existence nor the weight of links in future rounds. In this paper we analyze BitTorrent, Network Coding, Tree Coding, and Tree Network Coding. We show that the average encoding and decoding complexity of Tree Coding is bounded by O(kn log~2 n) disk read/write-operations where k is the number of trees and n the number of data blocks. Tree Coding has perfect performance in communication networks of depth two with a disk read/write complexity of O(pnt log~3 n) where p is the number of peers, t is the number of rounds, and n is the number of data blocks. For arbitrary networks Tree Coding performs optimally using 2(δ +1)~(t-1) plog~2 n trees which results in a read/write complexity of O((δ + 1)~(t-1) nlog~3 n) for t rounds and in-degree δ.
机译:分区是在对等网络中传输大文件的主要技术。对等方可以在下载后立即重新分发每个部分。 BitTorrent将这种方法与激励上传相结合,从而成为最成功的对等网络。但是,如果文件不受欢迎并且由不定期参与的对等方分发,则BitTorrent将会失败。众所周知,网络编码总是提供最佳的数据分布,称为最佳性能。然而,为了对单个代码块进行编码或解码,必须读取整个文件,并且用户不愿意从硬盘读取O(n2)个数据块来发送n个消息块。我们称其为编码的磁盘读/写复杂性。是否存在快速网络编码方案是一个悬而未决的问题。在本文中,我们提出了一种用于简单通信模式的解决方案。在此,在循环模型中,每个对等方可以向其他对等方发送数量有限的消息。我们将此有向无环通信图的深度定义为最大路径长度(不计算回合)。在我们的在线模型中,每个对等方都知道当前回合中其通信链路的带宽,但是在未来回合中既不知道链路的存在也不知道其权重。在本文中,我们分析了BitTorrent,网络编码,树编码和树网络编码。我们表明,树编码的平均编码和解码复杂度受O(kn log〜2 n)磁盘读/写操作的限制,其中k是树数,n是数据块数。树深度编码在深度为2的通信网络中具有完美的性能,磁盘读/写复杂度为O(pnt log〜3 n),其中p是对等体的数量,t是回合的数量,n是数据块的数量。对于任意网络,树编码使用2(δ+1)〜(t-1)plog〜2 n个树来最佳执行,这导致O((δ+ 1)〜(t-1)nlog〜3的读/写复杂度n)t轮和进度δ。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号