首页> 外文会议>2018年第79回応用物理学会秋季学術講演会講演予稿集 >Automated Reverse Rotation Centrifugal Microfluidic Chip System for eflow and Trapping of Single Cells
【24h】

Automated Reverse Rotation Centrifugal Microfluidic Chip System for eflow and Trapping of Single Cells

机译:自动逆向旋转离心微流控芯片系统,用于单细胞的流出和捕获

获取原文

摘要

Single cell trapping has proven to be one of the key strong points of microfluidics technology in the field of Life Sciences. Many reports have been presented claiming to have very high trap efficiency (~100%). However, when compared to the number of cells perfused through the trap arrays, most of the cells go to waste. This poses an issue when dealing with rare cells such as circulating tumor cells, stem cells, cell infected by virus or parasites, or to a suspension from a biopsy sample where all cells are desired to be analyzed. To address this concern, a reflow system has been envisioned to increase the probability of particle trapping. Hydrodynamic trapping has been highly favored among single cell trapping technologies for its easy parallelization of particle manipulation and handling. In addition, centrifugal microfluidics is a preferred flow control microfluidics technology due to its simplicity and familiarity of most individuals in operation. With the combination of the two technologies and utilizing the conservation of momentum theory, a reflow system has been envisioned by simply changing the rotation. This report presents the design and operation of the developed centrifugal microfluidic system that utilizes alternating reverse rotation to induce the reflow in the designed microfluidic chip. A good trapping capability has been observed with 15 um bead and with THP-1 cells after 10 flips. A trapping efficiency of ~55% has been observed and doesn’t seem to vary as the number of flips changes. A close inspection of the inlet and outlets shows that there are particles that didn’t enter the channel. Thus, the constant trapping efficiency indicates that the particles that enter the channels remained and get trapped. Still, a new design for the inlet is needed to ensure that all particles will enter the channel.
机译:单细胞捕获已被证明是生命科学领域微流控技术的关键优势之一。提出了许多报告,声称它们具有很高的捕集效率(〜100%)。但是,与通过陷阱阵列灌注的细胞数量相比,大多数细胞会浪费掉。当处理稀有细胞(例如循环肿瘤细胞,干细胞,被病毒或寄生虫感染的细胞)或活检样品的悬浮液(需要对所有细胞进行分析)时,这就构成了一个问题。为了解决这个问题,已经设想了一种回流系统来增加颗粒捕获的可能性。流体动力捕集因其易于并行处理颗粒操作和处理而受到单细胞捕集技术的高度青睐。另外,由于离心微流体技术的简单性和对大多数操作人员的熟悉性,它是一种优选的流量控制微流体技术。结合这两种技术并利用动量守恒理论,可以通过简单地改变旋转角度来构想一种回流系统。该报告介绍了开发的离心微流控系统的设计和操作,该系统利用交替的反向旋转在设计的微流控芯片中引起回流。翻转10次后,使用15 um磁珠和THP-1细胞观察到良好的捕获能力。观察到的诱捕效率约为55%,并且似乎不会随着翻转次数的变化而变化。对入口和出口进行仔细检查后发现,有一些颗粒没有进入通道。因此,恒定的捕集效率表明进入通道的颗粒保留并被捕集。尽管如此,仍需要对进气口进行新设计,以确保所有颗粒都将进入通道。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号