首页> 外文会议>Proceedings of the second ACM conference on data and application security and privacy >A Model-Theoretic Approach to Data Anonymity and Inference Control
【24h】

A Model-Theoretic Approach to Data Anonymity and Inference Control

机译:数据匿名和推理控制的模型理论方法

获取原文
获取原文并翻译 | 示例

摘要

In secure data management the inference problem occurs when data classified at a high security level becomes inferrible from data classified at lower levels. We present a model-theoretic approach to this problem that captures the epistemic state of the database user as a set of possible worlds or models. Privacy is enforced by requiring the existence of k > 1 models assigning distinct values to sensitive attributes, and implemented via model counting. We provide an algorithm mechanizing this process and show that it is sound and complete for a large class of queries.
机译:在安全数据管理中,当从低级别分类的数据中可以推断出高安全级别分类的数据时,就会出现推理问题。我们提出了一种针对该问题的模型理论方法,该方法将数据库用户的认知状态捕获为一组可能的世界或模型。通过要求存在k> 1个模型来加强隐私,k> 1个模型为敏感属性分配了不同的值,并通过模型计数来实现。我们提供了使该过程机械化的算法,并表明它对于大量的查询而言是健全而完整的。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号