首页> 外文会议>Proceedings of the second ACM conference on data and application security and privacy >Privacy Streamliner: A Two-Stage Approach to Improving Algorithm Efficiency
【24h】

Privacy Streamliner: A Two-Stage Approach to Improving Algorithm Efficiency

机译:隐私Streamliner:一种提高算法效率的两阶段方法

获取原文
获取原文并翻译 | 示例

摘要

In releasing data with sensitive information, a data owner usually has seemingly conflicting goals, including privacy preservation, utility optimization, and algorithm efficiency. In this paper, we observe that a high computational complexity is usually incurred when an algorithm conflates the processes of privacy preservation and utility optimization. We then propose a novel privacy streamliner approach to decouple those two processes for improving algorithm efficiency. More specifically, we first identify a set of potential privacy-preserving solutions satisfying that an adversary's knowledge about this set itself will not help him/her to violate the privacy property; we can then optimize utility within this set without worrying about privacy breaches since such an optimization is now simulatable by adversaries. To make our approach more concrete, we study it in the context of micro-data release with publicly known generalization algorithms. The analysis and experiments both confirm our algorithms to be more efficient than existing solutions.
机译:在发布带有敏感信息的数据时,数据所有者通常具有看似相互矛盾的目标,包括隐私保护,实​​用程序优化和算法效率。在本文中,我们观察到,当算法将隐私保护和实用程序优化的过程放宽时,通常会导致很高的计算复杂度。然后,我们提出了一种新颖的隐私流线方法,以将这两个过程解耦以提高算法效率。更具体地说,我们首先确定一组潜在的隐私保护解决方案,这些解决方案满足了攻击者对此集合本身的了解不会帮助他/她侵犯隐私权;然后,我们可以在此集合内优化实用程序,而不必担心隐私受到侵犯,因为这样的优化现在可以被对手模拟。为了使我们的方法更具体,我们在微数据发布的上下文中使用公知的泛化算法对其进行研究。分析和实验均证实我们的算法比现有解决方案更有效。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号