首页> 外文会议>Proceedings of the 25th ACM symposium on parallelism in algorithms and architectures >Communication Efficient Gaussian Elimination with Partial Pivoting using a Shape Morphing Data Layout
【24h】

Communication Efficient Gaussian Elimination with Partial Pivoting using a Shape Morphing Data Layout

机译:使用形状变形数据布局进行部分枢轴旋转的高效通信高斯消除

获取原文
获取原文并翻译 | 示例

摘要

High performance for numerical linear algebra often comes at the expense of stability. Computing the LU decomposition of a matrix via Gaussian Elimination can be organized so that the computation involves regular and efficient data access. However, maintaining numerical stability via partial pivoting involves row interchanges that lead to inefficient data access patterns. To optimize communication efficiency throughout the memory hierarchy we confront two seemingly contradictory requirements: partial pivoting is efficient with column-major layout, whereas a block-recursive layout is optimal for the rest of the computation. We resolve this by introducing a shape morphing procedure that dynamically matches the layout to the computation throughout the algorithm, and show that Gaussian Elimination with partial pivoting can be performed in a communication efficient and cache-oblivious way. Our technique extends to QR decomposition, where computing Householder vectors prefers a different data layout than the rest of the computation.
机译:数值线性代数的高性能通常以稳定性为代价。可以组织通过高斯消去计算矩阵的LU分解,以便计算涉及规则且有效的数据访问。但是,通过部分旋转来保持数值稳定性涉及行交换,这会导致效率低下的数据访问模式。为了在整个存储器层次结构中优化通信效率,我们面临两个看似相互矛盾的要求:部分透视在列为主的布局中是有效的,而块递归布局在其余的计算中是最佳的。我们通过引入形状变形过程来解决此问题,该过程使布局与整个算法中的计算动态匹配,并且表明可以部分地进行枢轴旋转的高斯消除可以通过通信高效且不影响缓存的方式执行。我们的技术扩展到QR分解,在此方法中,Householder向量的计算与其余计算相比更喜欢不同的数据布局。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号