首页> 外文会议>Proceedings of the 2011 ACM conference on programming language design and implementation. >EnerJ: Approximate Data Types for Safe and General Low-Power Computation
【24h】

EnerJ: Approximate Data Types for Safe and General Low-Power Computation

机译:EnerJ:用于安全和通用低功耗计算的近似数据类型

获取原文
获取原文并翻译 | 示例

摘要

Energy is increasingly a first-order concern in computer systems. Exploiting energy-accuracy trade-offs is an attractive choice in applications that can tolerate inaccuracies. Recent work has explored exposing this trade-off in programming models. A key challenge, though, is how to isolate parts of the program that must be precise from those that can be approximated so that a program functions correctly even as quality of service degrades. We propose using type qualifiers to declare data that may be subject to approximate computation. Using these types, the system automatically maps approximate variables to low-power storage, uses low-power operations, and even applies more energy-efficient algorithms provided by the programmer. In addition, the system can statically guarantee isolation of the precise program component from the approximate component. This allows a programmer to control explicitly how information flows from approximate data to precise data. Importantly, employing static analysis eliminates the need for dynamic checks, further improving energy savings. As a proof of concept, we develop EnerJ, an extension to Java that adds approximate data types. We also propose a hardware architecture that offers explicit approximate storage and computation. We port several applications to EnerJ and show that our extensions are expressive and effective; a small number of annotations lead to significant potential energy savings (10%-50%) at very little accuracy cost.
机译:能源越来越成为计算机系统中的头等大事。在可以容忍误差的应用中,利用能量精度的权衡是一个有吸引力的选择。最近的工作探索了在编程模型中暴露这种折衷。但是,关键的挑战是如何将必须精确的程序部分与可以近似的部分隔离开,以便即使服务质量下降,程序也可以正常运行。我们建议使用类型限定符声明可能要进行近似计算的数据。使用这些类型,系统会自动将近似变量映射到低功耗存储,使用低功耗操作,甚至应用程序员提供的更节能的算法。另外,系统可以静态保证精确程序组件与近似组件的隔离。这使程序员可以明确地控制信息如何从近似数据流向精确数据。重要的是,采用静态分析消除了对动态检查的需求,从而进一步节省了能源。作为概念证明,我们开发了EnerJ,它是Java的扩展,添加了近似的数据类型。我们还提出了一种硬件体系结构,该体系结构提供了显式的近似存储和计算。我们将几个应用程序移植到EnerJ,并证明我们的扩展是富有表现力和有效的。少量注释会以极少的准确性成本带来可观的潜在节能效果(10%-50%)。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号