首页> 外文会议>Proceedings of the 2011 ACM conference on programming language design and implementation. >An SSA-based Algorithm for Optimal Speculative Code Motion under an Execution Profile
【24h】

An SSA-based Algorithm for Optimal Speculative Code Motion under an Execution Profile

机译:执行配置文件下基于SSA的最佳推测代码运动算法

获取原文
获取原文并翻译 | 示例

摘要

To derive maximum optimization benefits from partial redundancy elimination (PRE), it is necessary to go beyond its safety constraint. Algorithms for optimal speculative code motion have been developed based on the application of minimum cut to flow networks formed out of the control flow graph. These previous techniques did not take advantage of the SSA form, which is a popular program representation widely used in modern-day compilers. We have developed the MC-SSAPRE algorithm that enables an SSA-based compiler to take full advantage of SSA to perform optimal speculative code motion efficiently when an execution profile is available. Our work shows that it is possible to form flow networks out of SSA graphs, and the min-cut technique can be applied equally well on these flow networks to find the optimal code placement. We provide proofs of the correctness and computational and lifetime optimality of MC-SSAPRE. We analyze its time complexity to show its efficiency advantage. We have implemented MC-SSAPRE in the open-sourced Path64 compiler. Our experimental data based on the full SPEC CPU2006 Benchmark Suite show that MC-SSAPRE can further improve program performance over traditional SSAPRE, and that our sparse approach to the problem does result in smaller problem sizes.
机译:为了从部分冗余消除(PRE)中获得最大的优化收益,有必要超越其安全性约束。基于最小割对控制流图所形成的流网络的应用,已经开发了用于最佳投机代码运动的算法。这些先前的技术没有利用SSA形式,它是一种在现代编译器中广泛使用的流行程序表示形式。我们已经开发了MC-SSAPRE算法,该算法使基于SSA的编译器可以充分利用SSA的优势,以在执行配置文件可用时有效地执行优化的推测代码运动。我们的工作表明,可以从SSA图中形成流网络,并且最小割技术可以同样很好地应用于这些流网络,以找到最佳的代码位置。我们提供了MC-SSAPRE的正确性以及计算和生命周期最优性的证明。我们分析其时间复杂度以显示其效率优势。我们已经在开源的Path64编译器中实现了MC-SSAPRE。我们基于完整的SPEC CPU2006 Benchmark Suite的实验数据表明,MC-SSAPRE可以比传统的SSAPRE进一步提高程序性能,而我们针对问题的稀疏方法确实可以减小问题的大小。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号