【24h】

Learning-based anomaly detection in BGP updates

机译:BGP更新中基于学习的异常检测

获取原文
获取原文并翻译 | 示例

摘要

Detecting anomalous BGP-route advertisements is crucial for improving the security and robustness of the Internet's interdomain-routing system. In this paper, we propose an instance-learning framework that identifies anomalies based on deviations from the "normal" BGP-update dynamics for a given destination prefix and across prefixes. We employ wavelets for a systematic, multi-scaled analysis that avoids the "magic numbers" (e.g., for grouping related update messages) needed in previous approaches to BGP-anomaly detection. Our preliminary results show that the update dynamics are generally consistent across prefixes and time. Only a few prefixes differ from the majority, and most prefixes exhibit similar behavior across time. This small set of abnormal prefixes and time intervals may be further examined to determine the source of anomalous behavior. In particular, we observe that many of the unusual prefixes are unstable prefixes that experience frequent routing changes.
机译:检测异常的BGP路由通告对于提高Internet的域间路由系统的安全性和鲁棒性至关重要。在本文中,我们提出了一个实例学习框架,该框架基于给定目标前缀和跨前缀的“正常” BGP更新动态的偏差来识别异常。我们采用小波进行系统的,多尺度的分析,避免了以前的BGP异常检测方法所需的“幻数”(例如,用于对相关的更新消息进行分组)。我们的初步结果表明,更新动态在前缀和时间上通常是一致的。只有少数几个前缀与大多数前缀有所不同,并且大多数前缀在时间上表现出相似的行为。可以进一步检查这小套异常前缀和时间间隔,以确定异常行为的根源。特别是,我们观察到许多不寻常的前缀是不稳定的前缀,它们会经常发生路由更改。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号