首页> 外文会议>Proceedings of the 16th ACM symposium on access control models and technologies >Modeling Data Flow in Socio-lnformation Networks: A Risk Estimation Approach
【24h】

Modeling Data Flow in Socio-lnformation Networks: A Risk Estimation Approach

机译:在社会信息网络中建模数据流:一种风险估计方法

获取原文
获取原文并翻译 | 示例

摘要

Information leakage via the networks formed by subjects (e.g., Facebook, Twitter) and objects (e.g., blogosphere) -some of whom may be controlled by malicious insiders - often leads to unpredicted access control risks. While it may be impossible to precisely quantify information flows between two entities (e.g., two friends in a social network), this paper presents a first attempt towards leveraging recent, advances in modeling socio-information networks to develop a statistical risk estimation paradigm for quantifying such insider threats. In the context of socio-information networks, our models estimate the following likelihoods: prior flow -has a subject s acquired covert access to object o via the networks? posterior flow - if s is granted access to o, what is its impact on information flows between subject s' and object o'? network evolution - how will a newly created social relationship between a and s' influence current risk estimates? Our goal is not to prescribe a one-size-fits-all solution; instead we develop a set of composable network-centric risk estimation operators, with implementations configurable to concrete socio-information networks. The efficacy of our solutions is empirically evaluated using real-life datasets collected from the IBM SmallBlue project and Twitter.
机译:通过由主题(例如,Facebook,Twitter)和对象(例如,博客圈)形成的网络的信息泄漏(其中一些可能由恶意内部人员控制)经常导致不可预知的访问控制风险。虽然可能无法精确地量化两个实体(例如,社交网络中的两个朋友)之间的信息流,但本文提出了尝试利用最新的社会信息网络建模方法来开发用于量化的统计风险估计范式的尝试。这样的内部威胁。在社会信息网络的背景下,我们的模型估计了以下可能性:先验流程-主体是否已通过网络隐蔽地访问对象o?后流-如果s被授予访问o的权限,那么它对主题s'和对象o'之间的信息流有什么影响?网络演进-a和s之间新建立的社会关系将如何影响当前的风险估计?我们的目标不是制定一种万能的解决方案;相反,我们开发了一组可组合的,以网络为中心的风险评估算子,其实现可配置为具体的社会信息网络。我们使用从IBM SmallBlue项目和Twitter收集的实际数据集,对我们解决方案的有效性进行了经验评估。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号