首页> 外文会议>Probabilistic graphical models >Treewidth and the Computational Complexity of MAP Approximations
【24h】

Treewidth and the Computational Complexity of MAP Approximations

机译:树宽和MAP逼近的计算复杂度

获取原文
获取原文并翻译 | 示例

摘要

The problem of finding the most probable explanation to a designated set of variables (the MAP problem) is a notoriously intractable problem in Bayesian networks, both to compute exactly and to approximate. It is known, both from theoretical considerations and from practical experiences, that low treewidth is typically an essential prerequisite to efficient exact computations in Bayesian networks. In this paper we investigate whether the same holds for approximating MAP. We define four notions of approximating MAP (by value, structure, rank, and expectation) and argue that all of them are intractable in general. We prove that efficient value-, structure-, and rank-approximations of MAP instances with high treewidth will violate the Exponential Time Hypothesis. In contrast, we hint that expectation-approximation can be done efficiently, even in MAP instances with high treewidth, if the most probable explanation has a high probability.
机译:在贝叶斯网络中,无论是精确计算还是近似估计,找到对一组指定变量的最可能解释的问题(MAP问题)都是众所周知的棘手问题。从理论上和实践上都知道,低树宽通常是在贝叶斯网络中进行有效精确计算的必要先决条件。在本文中,我们研究了近似MAP是否成立。我们定义了四个近似MAP的概念(按值,结构,等级和期望),并认为它们在总体上都是难以理解的。我们证明具有高树宽的MAP实例的有效值,结构和秩近似将违反指数时间假说。相反,我们暗示,即使最有可能的解释具有很高的可能性,即使在具有高树宽的MAP实例中,期望逼近也可以有效地完成。

著录项

  • 来源
    《Probabilistic graphical models》|2014年|271-285|共15页
  • 会议地点 Utrecht(NL)
  • 作者

    Johan Kwisthout;

  • 作者单位

    Radboud University Nijmegen, Donders Institute for Brain, Cognition and Behaviour, Montessorilaan 3, 6525 HR Nijmegen, The Netherlands;

  • 会议组织
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号