首页> 外文会议>Privacy in Statistical Databases; Lecture Notes in Computer Science; 4302 >Protecting the Confidentiality of Survey Tabular Data by Adding Noise to the Underlying Microdata: Application to the Commodity Flow Survey
【24h】

Protecting the Confidentiality of Survey Tabular Data by Adding Noise to the Underlying Microdata: Application to the Commodity Flow Survey

机译:通过向基础微数据添加噪声来保护调查表格数据的机密性:在商品流量调查中的应用

获取原文
获取原文并翻译 | 示例

摘要

The Commodity Flow Survey (CFS) produces data on the movement of goods in the United States. The data from the CFS are used by analysts for transportation modeling, planning and decision-making. Cell suppression has been used over the years to protect responding companies' values in CFS data. Data users, especially transportation modelers, would like to have access to data tables that do not have missing data due to suppression. To meet this need, we are testing the application of a noise protection method (Evans et al) that involves adding noise to the underlying CFS microdata prior to tabulation to protect sensitive cells in CFS tables released to the public. Initial findings of this research have been positive. This paper describes detailed analyses that may be performed to evaluate the effectiveness of the noise protection.
机译:商品流动调查(CFS)会生成有关美国货物运输的数据。分析人员将粮安委的数据用于运输建模,规划和决策。多年来,一直使用单元抑制来保护CFS数据中响应公司的价值。数据用户,尤其是运输建模人员,希望能够访问由于抑制而不会丢失数据的数据表。为了满足这一需求,我们正在测试一种噪声保护方法(Evans等)的应用,该方法包括在制表之前在基础CFS微数据中添加噪声,以保护发布给公众的CFS表中的敏感单元格。这项研究的初步发现是积极的。本文介绍了可以执行的详细分析,以评估噪声保护的有效性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号