首页> 外文会议>Privacy and security issues in data mining and machine learning >Privacy Preserving Protocols for Eigenvector Computation
【24h】

Privacy Preserving Protocols for Eigenvector Computation

机译:特征向量计算的隐私保护协议

获取原文
获取原文并翻译 | 示例

摘要

In this paper, we present a protocol for computing the principal eigenvector of a collection of data matrices belonging to multiple semi-honest parties with privacy constraints. Our proposed protocol is based on secure multi-party computation with a semi-honest arbitrator who deals with data encrypted by the other parties using an additive homomorphic cryptosystem. We augment the protocol with randomization and oblivious transfer to make it difficult for any party to estimate properties of the data belonging to other parties from the intermediate steps. The previous approaches towards this problem were based on expensive QR decomposition of correlation matrices, we present an efficient algorithm using the power iteration method. We present an analysis of the correctness, security, and efficiency of protocol.
机译:在本文中,我们提出了一种协议,用于计算属于多个半诚实方且具有隐私约束的数据矩阵集合的主要特征向量。我们提出的协议基于半诚实仲裁员的安全多方计算,该仲裁员使用加法同态密码系统处理由其他方加密的数据。我们通过随机化和遗忘传输来扩展协议,以使任何一方都难以从中间步骤中估计属于其他方的数据的属性。解决该问题的先前方法是基于相关矩阵的昂贵QR分解,我们提出了一种使用幂迭代方法的有效算法。我们对协议的正确性,安全性和效率进行了分析。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号