首页> 外文会议>Privacy in statistical databases >Logistic Regression with Variables Subject to Post Randomization Method
【24h】

Logistic Regression with Variables Subject to Post Randomization Method

机译:具有后随机方法的变量的Logistic回归

获取原文
获取原文并翻译 | 示例

摘要

The Post Randomization Method (PRAM) is a disclosure avoidance method, where values of categorical variables are perturbed via some known probability mechanism, and only the perturbed data are released thus raising issues regarding disclosure risk and data utility. In this paper, we develop and implement a number of EM algorithms to obtain unbiased estimates of the logistic regression model with data subject to PRAM, and thus effectively account for the effects of PRAM and preserve data utility. Three different cases are considered: (1) covariates subject to PRAM, (2) response variable subject to PRAM, and (3) both covariates and response variables subject to PRAM. The proposed techniques improve on current methodology by increasing the applicability of PRAM to a wider range of products and could be extended to other type of generalized linear models. The effects of the level of perturbation and sample size on the estimates are evaluated, and relevant standard error estimates are developed and reported.
机译:后随机化方法(PRAM)是一种避免披露的方法,其中通过一些已知的概率机制干扰类别变量的值,并且仅释放受干扰的数据,因此引发了有关披露风险和数据实用性的问题。在本文中,我们开发并实现了许多EM算法,以获取带有PRAM数据的logistic回归模型的无偏估计,从而有效地考虑了PRAM的影响并保留了数据实用性。考虑了三种不同的情况:(1)服从PRAM的协变量,(2)服从PRAM的响应变量,以及(3)服从PRAM的协变量和响应变量。所提出的技术通过增加PRAM在更广泛产品范围内的适用性而对当前方法进行了改进,并且可以扩展到其他类型的广义线性模型。评估摄动水平和样本量对估计值的影响,并制定和报告相关的标准误差估计值。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号