首页> 外文会议>Principles of distributed systems >Application of Random Walks to Decentralized Recommender Systems
【24h】

Application of Random Walks to Decentralized Recommender Systems

机译:随机游走在分散推荐系统中的应用

获取原文
获取原文并翻译 | 示例

摘要

The need for efficient decentralized recommender systems has been appreciated for some time, both for the intrinsic advantages of decentralization and the necessity of integrating recommender systems into P2P applications. On the other hand, the accuracy of recommender systems is often hurt by data sparsity. In this paper, we compare different decentralized user-based and item-based Collaborative Filtering (CF) algorithms with each other, and propose a new user-based random walk approach customized for decentralized systems, specifically designed to handle sparse data. We show how the application of random walks to decentralized environments is different from the centralized version. We examine the performance of our random walk approach in different settings by varying the sparsity, the similarity measure arid the neighborhood size. In addition, we introduce the popularizing disadvantage of the significance weighting term traditionally used to increase the precision of similarity measures, and elaborate how it can affect the performance of the random walk algorithm. The simulations on MovieLens 10,000,000 ratings dataset demonstrate that over a wide range of sparsity, our algorithm outperforms other decentralized CF schemes. Moreover, our results show decentralized user-based approaches perform better than their item-based counterparts in P2P recommender applications.
机译:由于分散的内在优势以及将推荐系统集成到P2P应用程序中的必要性,人们已经意识到对高效的分散式推荐系统的需求已有一段时间。另一方面,数据稀疏性经常会损害推荐系统的准确性。在本文中,我们将不同的基于用户的分散式和基于项目的协作过滤(CF)算法相互比较,并提出了一种专为分散式系统定制的,基于用户的随机游走新方法,专门用于处理稀疏数据。我们展示了随机游走在分散环境中的应用与集中式环境有何不同。我们通过改变稀疏度,相似性度量和邻域大小来检查我们的随机游走方法在不同环境下的性能。另外,我们介绍了传统上用来提高相似性度量精度的重要性加权项的推广缺点,并详细说明了它如何影响随机游走算法的性能。在MovieLens 10,000,000收视率数据集上的仿真表明,在广泛的稀疏度下,我们的算法优于其他分散式CF方案。此外,我们的结果表明,在P2P推荐器应用程序中,基于分散用户的方法比基于项目的方法表现更好。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号