首页> 外文会议>PODC'10 : Proceedings of the 2010 ACM symposium on principles of distributed computing >A Modular Approach to Shared-Memory Consensus, with Applications to the Probabilistic-Write Model
【24h】

A Modular Approach to Shared-Memory Consensus, with Applications to the Probabilistic-Write Model

机译:共享内存共识的模块化方法及其在概率写模型中的应用

获取原文
获取原文并翻译 | 示例

摘要

We define two new classes of shared-memory objects: rati-flers, which detect agreement, and conciliators, which ensure agreement with some probability. We show that consensus can be solved by an alternating sequence of these objects, and observe that most known randomized consensus algorithms have this structure. We give a deterministic m-valued ratifier for an unbounded number of processes that uses lgm + Θ(loglogm) space and individual work. We also give a randomized conciliator for any number of values in the probabilistic-write model with n processes that guarantees agreement with constant probability while using one multiwriter register, O(logn) expected individual work, and Θ(n) expected total work. Combining these objects gives a consensus protocol for the probabilistic-write model that uses O(log n) individual work and O(n log m) total work. No previous protocol in this model uses sublinear individual work or linear total work for constant m.
机译:我们定义了两类新的共享内存对象:“ rati-flers”(检测一致性)和“和解”(concillator),它们以一定的概率确保一致性。我们表明共识可以通过这些对象的交替序列来解决,并观察到大多数已知的随机共识算法都具有这种结构。我们为使用lgm +Θ(loglogm)空间和单个工作的无限数量的过程提供了确定性的m值批准者。我们还为概率写模型中具有n个过程的任意数量的值提供了一个随机调解器,该过程可确保使用一个多写寄存器,O(logn)预期的单个工作和Θ(n)的预期总工作时具有恒定概率的一致性。组合这些对象为使用O(log n)单个工作和O(n log m)总工作的概率写模型提供了一个共识协议。在此模型中,以前的协议都没有针对常数m使用亚线性个体功或线性总功。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号