首页> 外文会议>Pattern recognition >Learning with Few Examples by Transferring Feature Relevance
【24h】

Learning with Few Examples by Transferring Feature Relevance

机译:通过转移特征相关性学习很少的示例

获取原文
获取原文并翻译 | 示例

摘要

The human ability to learn difficult object categories from just a few views is often explained by an extensive use of knowledge from related classes. In this work we study the use of feature relevance as prior information from similar binary classification tasks. An approach is presented which is capable to use this information to increase the recognition performance for learning with few examples on a new binary classification task. Feature relevance probabilities are estimated by a randomized decision forest of a related task and used as a prior distribution in the construction of a new forest. Experiments in an image categorization scenario show a significant performance gain in the case of few training examples.
机译:人们从少数几个角度学习困难的物体类别的能力通常通过广泛使用相关类别的知识来解释。在这项工作中,我们研究了使用特征相关性作为类似二进制分类任务中的先验信息。提出了一种方法,该方法能够使用此信息来提高学习的识别性能,而在新的二进制分类任务上仅需很少的示例。特征相关概率由相关任务的随机决策林估计,并在构建新森林时用作先验分布。在图像分类场景中的实验表明,在很少的训练示例的情况下,性能有了显着提高。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号