首页> 外文会议>Pattern Recognition; Lecture Notes in Computer Science; 4174 >Sparse Patch-Histograms for Object Classification in Cluttered Images
【24h】

Sparse Patch-Histograms for Object Classification in Cluttered Images

机译:杂波图像中的对象分类的稀疏直方图

获取原文
获取原文并翻译 | 示例

摘要

We present a novel model for object recognition and detection that follows the widely adopted assumption that objects in images can be represented as a set of loosely coupled parts. In contrast to former models, the presented method can cope with an arbitrary number of object parts. Here, the object parts are modelled by image patches that are extracted at each position and then efficiently stored in a histogram. In addition to the patch appearance, the positions of the extracted patches are considered and provide a significant increase in the recognition performance. Additionally, a new and efficient histogram comparison method taking into account inter-bin similarities is proposed. The presented method is evaluated for the task of radiograph recognition where it achieves the best result published so far. Furthermore it yields very competitive results for the commonly used Caltech object detection tasks.
机译:我们提出了一种新的对象识别和检测模型,该模型遵循被广泛采用的假设,即图像中的对象可以表示为一组松耦合部分。与以前的模型相比,本文提出的方法可以处理任意数量的对象部分。在此,通过在每个位置提取图像块并将它们有效地存储在直方图中来对对象部分进行建模。除补丁外观外,还考虑了提取补丁的位置,并大大提高了识别性能。此外,提出了一种新的,高效的直方图比较方法,该方法考虑了仓间相似性。所提出的方法在射线照相识别的任务中得到了评估,该方法达到了迄今为​​止所发表的最佳结果。此外,对于常用的Caltech对象检测任务,它还可以产生非常有竞争力的结果。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号