首页> 外文会议>Pattern recognition in bioinformatics >Sub-grid and Spot Detection in DNA Microarray Images Using Optimal Multi-level Thresholding
【24h】

Sub-grid and Spot Detection in DNA Microarray Images Using Optimal Multi-level Thresholding

机译:使用最佳多级阈值处理DNA微阵列图像中的亚网格和斑点检测

获取原文
获取原文并翻译 | 示例

摘要

The analysis of DNA microarray images is a crucial step in gene expression analysis, since any errors in early stages are propagated in future steps in the analysis. When processing the underlying images, accurately separating the sub-grids and spots is of extreme importance for subsequent steps that include segmentation, quantification, normalization and clustering. We propose a fully automatic approach that first detects the sub-grids given the entire microarray image, and then detects the locations of the spots in each sub-grid. The approach first detects and corrects rotations in the images by an affine transformation, followed by a polynomial-time optimal multi-level thresholding algorithm to find the positions of the sub-grids and spots. Additionally, a new validity index is proposed in order to find the correct number of sub-grids in the microarray image, and the correct number of spots in each sub-grid. Extensive experiments on real-life microarray images show that the method performs these tasks automatically and with a high degree of accuracy.
机译:DNA微阵列图像的分析是基因表达分析中的关键步骤,因为早期的任何错误都会在分析的后续步骤中传播。在处理基础图像时,准确分离子网格和斑点对于后续步骤(包括分割,量化,归一化和聚类)至关重要。我们提出了一种全自动方法,该方法首先在给定整个微阵列图像的情况下检测子网格,然后检测每个子网格中斑点的位置。该方法首先通过仿射变换检测并校正图像中的旋转,然后通过多项式时间最佳多级阈值算法来找到子网格和斑点的位置。另外,提出了新的有效性指标,以便在微阵列图像中找到正确数量的子网格,以及在每个子网格中的正确点数。在现实生活中的微阵列图像上进行的大量实验表明,该方法可自动且高度准确地执行这些任务。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号