首页> 外文会议>Pattern recognition in bioinformatics >Integrating Protein Family Sequence Similarities with Gene Expression to Find Signature Gene Networks in Breast Cancer Metastasis
【24h】

Integrating Protein Family Sequence Similarities with Gene Expression to Find Signature Gene Networks in Breast Cancer Metastasis

机译:整合蛋白质家族序列相似性与基因表达以寻找乳腺癌转移中的签名基因网络

获取原文
获取原文并翻译 | 示例

摘要

Finding robust marker genes is one of the key challenges in breast cancer research. Significant signatures identified in independent datasets often show little to no overlap, possibly due to small sample size, noise in gene expression measurements, and heterogeneity across patients. To find more robust markers, several studies analyzed the gene expression data by grouping functionally related genes using pathways or protein interaction data. Here we pursue a protein similarity measure based on Pfam protein family information to aid the identification of robust subnetworks for prediction of metastasis. The proposed protein-to-protein similarities are derived from a protein-to-family network using family HMM profiles. The gene expression data is overlaid with the obtained protein-protein sequence similarity network on six breast cancer datasets. The results indicate that the captured protein similarities represent interesting predictive capacity that aids interpretation of the resulting signatures and improves robustness.
机译:寻找健壮的标记基因是乳腺癌研究的关键挑战之一。在独立数据集中识别出的重要特征通常显示很少甚至没有重叠,这可能是由于样本量小,基因表达测量中的噪声以及患者之间的异质性。为了找到更强大的标记,一些研究通过使用途径或蛋白质相互作用数据对功能相关基因进行分组来分析基因表达数据。在这里,我们追求基于Pfam蛋白质家族信息的蛋白质相似性度量,以帮助确定用于预测转移的强大子网。所提出的蛋白质与蛋白质相似性是使用家族HMM配置文件从蛋白质与家族网络得出的。基因表达数据与获得的蛋白质-蛋白质序列相似性网络覆盖在六个乳腺癌数据集上。结果表明,捕获的蛋白质相似性代表了有趣的预测能力,有助于解释所得特征并提高鲁棒性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号