首页> 外文会议>Parameterized and exact computation >Parameterized Complexity Results for General Factors in Bipartite Graphs with an Application to Constraint Programming
【24h】

Parameterized Complexity Results for General Factors in Bipartite Graphs with an Application to Constraint Programming

机译:二部图中一般因子的参数化复杂度结果及其在约束规划中的应用

获取原文
获取原文并翻译 | 示例

摘要

The NP-hard general factor problem asks, given a graph and for each vertex a list of integers, whether the graph has a spanning subgraph where each vertex has a degree that belongs to its assigned list. The problem remains NP-hard even if the given graph is bipartite with partition U(U)V, and each vertex in U is assigned the list {1}; this subproblem appears in the context of constraint programming as the consistency problem for the extended global cardinality constraint. We show that this subproblem is fixed-parameter tractable when parameterized by the size of the second partite set V. More generally, we show that the general factor problem for bipartite graphs, parameterized by V, is fixed-parameter tractable as long as all vertices in U are assigned lists of length 1, but becomes W[l]-hard if vertices in U are assigned lists of length at most 2. We establish fixed-parameter tractability by reducing the problem instance to a bounded number of acyclic instances, each of which can be solved in polynomial time by dynamic programming.
机译:给定一个图和给每个顶点一个整数列表,NP硬通用因子问题询问该图是否具有跨度子图,其中每个顶点都具有一个属于其分配列表的度。即使给定图是具有分区U(U)V的二部图,并且U中的每个顶点都被分配了列表{1},问题仍然是NP难题。该子问题在约束编程的上下文中显示为扩展的全局基数约束的一致性问题。我们显示出,当通过第二部分集V的大小进行参数化时,该子问题是固定参数可处理的。更普遍地,我们显示,只要所有顶点,由V参数化的二部图的一般因子问题都是固定参数可处理的在U中的顶点分配了长度为1的列表,但如果在U中的顶点分配了长度为2的列表,则变成W [l] -hard。我们通过将问题实例减少到无环实例的有限数目来建立固定参数的可处理性,每个实例其中可以通过动态编程在多项式时间内求解。

著录项

  • 来源
    《Parameterized and exact computation》|2010年|p.158-169|共12页
  • 会议地点 Chennai(IN);Chennai(IN)
  • 作者单位

    Department of Computer Science, Royal Holloway, University of London, Egham, Surrey TW20 OEX, UK;

    Department of Computer Science, Royal Holloway, University of London, Egham, Surrey TW20 OEX, UK;

    Department of Computer Science, Royal Holloway, University of London, Egham, Surrey TW20 OEX, UK;

    Institute of Information Systems, Vienna University of Technology, A-1040 Vienna, Austria;

    Department of Computer Science, Royal Holloway, University of London, Egham, Surrey TW20 OEX, UK;

  • 会议组织
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 计算技术、计算机技术;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号