首页> 外文会议>IEEE International Symposium on Parallel Distributed Processing;IPDPS 2009 >A faster parallel algorithm and efficient multithreaded implementations for evaluating betweenness centrality on massive datasets
【24h】

A faster parallel algorithm and efficient multithreaded implementations for evaluating betweenness centrality on massive datasets

机译:一种更快的并行算法和高效的多线程实现,用于评估海量数据集之间的中间性

获取原文

摘要

We present a new lock-free parallel algorithm for computing betweenness centrality of massive complex networks that achieves better spatial locality compared with previous approaches. Betweenness centrality is a key kernel in analyzing the importance of vertices (or edges) in applications ranging from social networks, to power grids, to the influence of jazz musicians, and is also incorporated into the DARPA HPCS SSCA#2, a benchmark extensively used to evaluate the performance of emerging high-performance computing architectures for graph analytics. We design an optimized implementation of betweenness centrality for the massively multithreaded Cray XMT system with the Thread-storm processor. For a small-world network of 268 million vertices and 2.147 billion edges, the 16-processor XMT system achieves a TEPS rate (an algorithmic performance count for the number of edges traversed per second) of 160 million per second, which corresponds to more than a 2times performance improvement over the previous parallel implementation. We demonstrate the applicability of our implementation to analyze massive real-world datasets by computing approximate betweenness centrality for the large IMDb movie-actor network.
机译:我们提出了一种新的无锁并行算法,用于计算大规模复杂网络之间的中间性,与以前的方法相比,它可以实现更好的空间局部性。中间性中间性是分析顶点(或边缘)在从社交网络到电网,爵士乐演奏者的影响等应用程序中的重要性的关键内核,并且还纳入了DARPA HPCS SSCA#2(广泛使用的基准)评估用于图形分析的新兴高性能计算架构的性能。我们使用线程风暴处理器为大型多线程Cray XMT系统设计了中间性中心的优化实现。对于由2.68亿个顶点和21.47亿条边组成的小世界网络,具有16个处理器的XMT系统可实现每秒1.6亿个的TEPS速率(每秒穿越的边数的算法性能计数),相当于与以前的并行实现相比,性能提高了2倍。我们通过计算大型IMDb电影演员网络的近似中间性来证明我们的实现方法可用于分析大量现实世界数据集的适用性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号