首页> 外文会议>Ocean sensing and monitoring >Defining the Uncertainty of Electro-Optical Identification System Performance Estimates Using a 3D Optical Environment Derived From Satellite
【24h】

Defining the Uncertainty of Electro-Optical Identification System Performance Estimates Using a 3D Optical Environment Derived From Satellite

机译:使用源自卫星的3D光学环境定义电光识别系统性能估计的不确定性

获取原文
获取原文并翻译 | 示例

摘要

Current United States Navy Mine-Counter-Measure (MCM) operations primarily use electro-optical identification (EOID) sensors to identify underwater targets after detection via acoustic sensors. These EOID sensors which are based on laser underwater imaging by design work best in "clear" waters and are limited in coastal waters especially with strong optical layers. Optical properties and in particular scattering and absorption play an important role on systems performance. Surface optical properties alone from satellite are not adequate to determine how well a system will perform at depth due to the existence of optical layers. The spatial and temporal characteristics of the 3d optical variability of the coastal waters along with strength and location of subsurface optical layers maximize chances of identifying underwater targets by exploiting optimum sensor deployment. Advanced methods have been developed to fuse the optical measurements from gliders, optical properties from "surface" satellite snapshot and 3-D ocean circulation models to extend the two-dimensional (2-D) surface satellite optical image into a three-dimensional (3-D) optical volume with subsurface optical layers. Modifications were made to an EOID performance model to integrate a 3-D optical volume covering an entire region of interest as input and derive system performance field. These enhancements extend present capability based on glider optics and EOID sensor models to estimate the system's "image quality". This only yields system performance information for a single glider profile location in a very large operational region. Finally, we define the uncertainty of the system performance by coupling the EOID performance model with the 3-D optical volume uncertainties. Knowing the ensemble spread of EOID performance field provides a new and unique capability for tactical decision makers and Navy Operations.
机译:当前的美国海军排雷对策(MCM)操作主要使用光电识别(EOID)传感器,以在通过声学传感器进行检测后识别水下目标。这些基于激光水下成像设计的EOID传感器在“清澈”水域中效果最佳,并且仅在沿海水域(尤其是具有坚固的光学层)中受到限制。光学性质,尤其是散射和吸收,对系统性能起着重要作用。由于存在光学层,仅来自卫星的表面光学特性不足以确定系统在深度上的性能。沿海水域的3d光学变异性的时空特征,以及地下光学层的强度和位置,通过利用最佳的传感器部署,最大化了识别水下目标的机会。已开发出先进的方法来融合滑翔机的光学测量结果,“地面”卫星快照的光学特性和3-D海洋环流模型,以将二维(2-D)地面卫星光学图像扩展为三维(3 -D)具有地下光学层的光学体积。对EOID性能模型进行了修改,以整合覆盖整个感兴趣区域的3-D光学体积作为输入并得出系统性能场。这些增强功能扩展了基于滑翔机光学元件和EOID传感器模型的现有功能,以估计系统的“图像质量”。这仅产生非常大的操作区域中单个滑翔机轮廓位置的系统性能信息。最后,我们通过将EOID性能模型与3-D光学体积不确定度耦合来定义系统性能的不确定度。知道EOID性能领域的整体传播为战术决策者和海军行动提供了新的独特功能。

著录项

  • 来源
    《Ocean sensing and monitoring》|2009年|731705.1-731705.8|共8页
  • 会议地点 Orlando FL(US)
  • 作者单位

    QinetiQ North America, Stennis Space Center, Mississippi, USA;

    Naval Research Laboratory, Stennis Space Center, Mississippi, USA;

    QinetiQ North America, Stennis Space Center, Mississippi, USA;

    Naval Research Laboratory, Stennis Space Center, Mississippi, USA;

    Naval Research Laboratory, Stennis Space Center, Mississippi, USA;

    Naval Research Laboratory, Stennis Space Center, Mississippi, USA;

    Naval Oceanographic Office, Stennis Space Center, Mississippi, USA;

    Metron Incorporated, Reston, VA, USA;

    Metron Incorporated, Reston, VA, USA;

  • 会议组织
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号