首页> 外文会议>Nondestructive Testing and Computer Simulations in Science and Engineering >Ion beam synthesis of (Si_(1-x)C_(1-y))Ge_(x+y) solid solutions in 4H-SiC
【24h】

Ion beam synthesis of (Si_(1-x)C_(1-y))Ge_(x+y) solid solutions in 4H-SiC

机译:4H-SiC中(Si_(1-x)C_(1-y))Ge_(x + y)固溶体的离子束合成

获取原文
获取原文并翻译 | 示例

摘要

Silicon Carbide is a wide band gap semiconductor material that offers many advantages over conventional semiconductor materials. Because of the high saturation drift velocity, the high break down field, the high thermal conductivity and chemical and radiation resistivity this material is suitable for electronic devices, operating at high temperatures, high frequencies and harsh environments. For the realization of many devices such as HBT (heterobipolar-transistor) and HEMT (high electron mobility transistor), the heterostrucrure formation is assumed. Up to date the only intrinsic heterostructures based on SiC are β-SiC/α-SiC heterojunctions using different bandgaps of different polytypes. Unfortunately this kind of heterostructures is not commercialized because of unsolved technological problems. For this reason the creation of (Si_(1-x) C_(1-y))Ge_(x+y) semiconductor solid solutions is attractive for bandgap and strain engineering in the Silicon Carbide technology. This new material is a suitable alternative to the aforementioned polytype heterostructures and therefore additional opportunity for heterojunction formation. There are only two experimental works reporting about epitaxial growth of (Si_(1-x)C_(1-y))Ge_(x+y) alloys. The challenges in this ternary system are the immiscibility of Ge in the SiC lattice, the low de-sorption temperature of Ge compared to Si on the SiC surface and the tendency of Si- and Ge-cluster formation during SiC epitaxial growth. The ion implantation of Ge in SiC provides the possibility to overcome this obstacles attendant to the growth process. The ion beam synthesis allows the incorporation of Ge atoms above the thermodynamical Ge misci-bility limit and leads to the formation of (Si_(1-x)C_(1-y))Ge_(x+y) alloys. Up to now only a few investigations on Ge implantation in hexagonal SiC (4H-SiC and 6H-SiC) have been carried out at different implantation conditions and post implantation treatments. The following results have been obtained. The amorphisation dosis at room temperature Ge ion implantation in the SiC lattice was found to be about 3 x 10~(14) cm~(-2) Polytype transitions from hexagonal into the cubic polytype and phase separation of Ge nanocrystalls in the SiC host material occurred at annealing temperatures between 1400 and 1600℃. The formation of compressive strained 4H-SiC:Ge layers at an implantation temperature of 1000℃ was also observed.
机译:碳化硅是一种宽带隙半导体材料,与常规半导体材料相比具有许多优势。由于高饱和漂移速度,高击穿场,高导热率以及化学和辐射电阻率,该材料适用于在高温,高频和恶劣环境下工作的电子设备。为了实现许多器件,例如HBT(异质双极晶体管)和HEMT(高电子迁移率晶体管),需要采用异质结构。迄今为止,基于SiC的唯一本征异质结构是使用不同多型的不同带隙的β-SiC/α-SiC异质结。不幸的是,由于未解决的技术问题,这种异质结构无法商业化。因此,对于碳化硅技术中的带隙和应变工程而言,(Si_(1-x)C_(1-y))Ge_(x + y)半导体固溶体的创建具有吸引力。这种新材料是上述多型异质结构的合适替代物,因此是形成异质结的额外机会。关于(Si_(1-x)C_(1-y))Ge_(x + y)合金的外延生长只有两个实验报道。这种三元体系面临的挑战是:SiC晶格中Ge的不溶混性,与SiC表面上的Si相比,Ge的解吸温度低以及SiC外延生长过程中形成Si和Ge簇的趋势。 SiC中Ge的离子注入为克服该生长过程带来的障碍提供了可能性。离子束合成允许掺入超过热力学Ge混溶性极限的Ge原子,并导致形成(Si_(1-x)C_(1-y))Ge_(x + y)合金。迄今为止,在不同的注入条件和注入后处理中,仅进行了少量的六方碳化硅(4H-SiC和6H-SiC)Ge注入研究。获得了以下结果。发现在室温下向SiC晶格中注入Ge离子时的非晶化剂量约为3 x 10〜(14)cm〜(-2)。从SiC基质材料中的六方型转变为立方多型,Ge纳米晶发生相分离。退火温度在1400至1600℃之间。在注入温度为1000℃时,还观察到了压缩应变的4H-SiC:Ge层的形成。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号