首页> 外文会议>Next-generation optical communication: components, sub-systems, and systems V >Performance analysis of low-complexity adaptive frequency-domain equalization and MIMO signal processing for compensation of differential mode group delay in mode-division multiplexing communication systems using few-mode fibers
【24h】

Performance analysis of low-complexity adaptive frequency-domain equalization and MIMO signal processing for compensation of differential mode group delay in mode-division multiplexing communication systems using few-mode fibers

机译:低复杂度自适应频域均衡和MIMO信号处理在少模光纤模分多路复用通信系统中补偿差模群时延的性能分析

获取原文
获取原文并翻译 | 示例

摘要

Mode-division multiplexing (MDM) transmission systems utilizing few-mode fibers (FMF) have been intensively explored to sustain continuous traffic growth. The key challenges of MDM systems are inter-modal crosstalk due to random mode coupling (RMC), and largely-accumulated differential mode group delay (DMGD), whilst hinders mode-demultiplexer implementation. The adaptive multi-input multi-output (MIMO) frequency-domain equalization (FDE) can dynamically compensate DMGD using digital signal processing (DSP) algorithms. The frequency-domain least-mean squares (FD-LMS) algorithm has been universally adopted for high-speed MDM communications, mainly for its relatively low computational complexity. However, longer training sequence is appended for FD-LMS to achieve faster convergence, which incurs prohibitively higher system overhead and reduces overall throughput. In this paper, we propose a fast-convergent single-stage adaptive frequency-domain recursive least-squares (FD-RLS) algorithm with reduced complexity for DMGD compensation at MDM coherent receivers. The performance and complexity comparison of FD-RLS, with signal-PSD-dependent FD-LMS method and conventional FD-LMS approach, are performed in a 3000 km six-mode transmission system with 65 ps/km DMGD. We explore the convergence speed of three adaptive algorithms, including the normalized mean-square-error (NMSE) per fast Fourier transform (FFT) block at 14-30 dB OSNR. The fast convergence of FD-RLS is exploited at the expense of slightly-increased necessary tap numbers for MIMO equalizers, and it can partially save the overhead of training sequence. Furthermore, we demonstrate adaptive FD-RLS can also be used for chromatic dispersion (CD) compensation without increasing the filter tap length, thus prominently reducing the DSP implementation complexity for MDM systems.
机译:已经广泛研究了利用少模光纤(FMF)的模分复用(MDM)传输系统,以维持连续的流量增长。 MDM系统的关键挑战是由于随机模式耦合(RMC)导致的模间串扰和大量积累的差分模式群时延(DMGD),同时又阻碍了模式多路分解器的实现。自适应多输入多输出(MIMO)频域均衡(FDE)可以使用数字信号处理(DSP)算法动态补偿DMGD。频域最小均方(FD-LMS)算法已普遍用于高速MDM通信,主要是因为其计算复杂度较低。但是,为FD-LMS附加了更长的训练序列,以实现更快的收敛,这会导致系统开销过高,并降低了总体吞吐量。在本文中,我们提出了一种快速收敛的单级自适应频域递归最小二乘(FD-RLS)算法,该算法具有较低的复杂度,可用于MDM相干接收机的DMGD补偿。 FD-RLS的性能和复杂度比较,分别采用依赖于信号PSD的FD-LMS方法和常规FD-LMS方法,在具有65 ps / km DMGD的3000 km六模传输系统中进行。我们探索了三种自适应算法的收敛速度,包括在14-30 dB OSNR时每个快速傅里叶变换(FFT)块的归一化均方误差(NMSE)。利用FD-RLS的快速收敛功能是以牺牲MIMO均衡器所需的抽头数稍微增加为代价的,它可以部分节省训练序列的开销。此外,我们证明了自适应FD-RLS也可用于色散(CD)补偿而无需增加滤波器抽头长度,从而显着降低了MDM系统的DSP实现复杂性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号