首页> 外文会议>Next-generation applied intelligence >NPUST: An Efficient Clustering Algorithm Using Partition Space Technique for Large Databases
【24h】

NPUST: An Efficient Clustering Algorithm Using Partition Space Technique for Large Databases

机译:NPUST:使用分区空间技术的大型数据库高效聚类算法

获取原文
获取原文并翻译 | 示例

摘要

The rapid progress of information technology has led to increasing amounts of data produced and stored in databases. How to extract the implicit and useful information with lower time cost and high correctness is of priority concern in data mining, explaining why many clustering methods have been developed in recent decades. This work presents a new clustering algorithm named NPUST, which is an enhanced version of KIDBSCAN. NPUST is a hybrid density-based approach, which partitions the dataset using K-means, and then clusters the resulting partitions with IDBSCAN. Finally, the closest pairs of clusters are merged until the natural number of clusters of dataset is reached. Experimental results indicate that the proposed algorithm can handle the entire cluster, and efficiently lower the run-time cost. They also reveal that the proposed new clustering algorithm performs better than several existing well-known approaches such as the K-means, DBSCAN, IDBSCAN and KIDBSCAN algorithms. Consequently, the proposed NPUST algorithm is efficient and effective for data clustering.
机译:信息技术的飞速发展导致越来越多的数据产生和存储在数据库中。如何以较低的时间成本和较高的正确性来提取隐式和有用的信息是数据挖掘中的优先重点,这解释了为什么近几十年来开发了许多聚类方法。这项工作提出了一种名为NPUST的新聚类算法,它是KIDBSCAN的增强版本。 NPUST是一种基于混合密度的方法,该方法使用K均值对数据集进行分区,然后使用IDBSCAN对结果分区进行聚类。最后,合并最接近的集群对,直到达到数据集的自然集群数。实验结果表明,该算法可以处理整个集群,并有效降低了运行时成本。他们还发现,提出的新聚类算法的性能优于几种现有的知名方法,例如K-means,DBSCAN,IDBSCAN和KIDBSCAN算法。因此,所提出的NPUST算法对于数据聚类是有效的。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号