首页> 外文会议>Neural Networks and Computational Intelligence >Employing Recurrent Artificial Neural Networks for Developing Baselines for Proactive Network Management
【24h】

Employing Recurrent Artificial Neural Networks for Developing Baselines for Proactive Network Management

机译:利用递归人工神经网络为主动网络管理制定基准

获取原文
获取原文并翻译 | 示例

摘要

This work presents a methodology to develop autonomous agents for network management. There are two kinds of agents to develop: static or dynamic agents. The first one can be implemented; using heuristics obtained from an expert or the network administrator, through production rules or feed forward neural networks (NN). Using the network examples we can construct dynamic agents. The NN may be trained to solve a problem using some examples. Moreover, the behavior of the management must be considered, the network management may be reactive or proactive. Normally, we have the reactive behavior when the problem occurs and after we will search for a solution. We may see in diagnostic or troubleticket systems for Fault Management. On the contrary, the proactive behavior is a preventive control of the network. We divided the network management in the five functional areas proposed by OSI Model Reference. Thus, each area has a different intelligent solution.
机译:这项工作提出了一种开发用于网络管理的自治代理的方法。要开发的代理有两种:静态或动态代理。第一个可以实现;通过生产规则或前馈神经网络(NN)使用从专家或网络管理员那里获得的启发式方法。使用网络示例,我们可以构建动态代理。可以使用一些示例来训练NN解决问题。而且,必须考虑管理的行为,网络管理可以是反应性的也可以是主动性的。通常,当问题发生时以及寻找解决方案后,我们会做出反应。我们可能会在诊断或故障单系统中看到“故障管理”。相反,主动行为是网络的预防性控制。我们将网络管理分为OSI模型参考提出的五个功能区域。因此,每个区域都有不同的智能解决方案。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号