首页> 外文会议>Network Operations and Management Symposium (NOMS), 2012 IEEE >Prediction of failure occurrence time based on system log message pattern learning
【24h】

Prediction of failure occurrence time based on system log message pattern learning

机译:基于系统日志消息模式学习的故障发生时间预测

获取原文
获取原文并翻译 | 示例

摘要

In order to avoid failures or diminish the impact of them, it is important to deal with them before its occurrence. Some existing approaches for online failure prediction are insufficient to handle the upcoming failures beforehand, because they cannot predict the failures early enough to execute workaround operations for failure. To solve this problem, we have developed a method to estimate the prediction period (the time period when a failure is expected to occur). Our method identifies the message patterns showing predictive signs of a certain failure through Bayesian learning from log messages and past failure reports. Using these patterns it predicts the occurrence of failures and their prediction period with sufficient interval. We conducted the evaluation of our approach with log data obtained from an actual system. The results shows that our method predicted the occurrence of failure with sufficient interval (60 minutes before the occurrence of failures) and sufficient accuracy (precision: over 0.7, recall: over 0.8).
机译:为了避免故障或减少故障的影响,在故障发生之前进行处理很重要。一些现有的在线故障预测方法不足以预先处理即将发生的故障,因为它们无法足够早地预测故障以执行故障的应急方案。为了解决这个问题,我们开发了一种方法来估计预测周期(预计发生故障的时间段)。我们的方法通过从日志消息和过去的故障报告中进行贝叶斯学习,识别出显示某些故障的预测迹象的消息模式。使用这些模式,可以以足够的间隔预测故障的发生及其预测周期。我们使用从实际系统获得的日志数据对我们的方法进行了评估。结果表明,我们的方法以足够的时间间隔(发生故障之前60分钟)和足够的准确性(精度:超过0.7,召回率:超过0.8)来预测故障的发生。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号