首页> 外文会议>Natural language processing and Chinese computing >Refining Kazakh Word Alignment Using Simulation Modeling Methods for Statistical Machine Translation
【24h】

Refining Kazakh Word Alignment Using Simulation Modeling Methods for Statistical Machine Translation

机译:统计机器翻译的仿真建模方法改进哈萨克语单词对齐方式

获取原文
获取原文并翻译 | 示例

摘要

Word alignment play an important role in the training of statistical machine translation systems. We present a technique to refine word alignments at phrase level after the collection of sentences from the Kazakh-English parallel corpora. The estimation technique extracts the phrase pairs from the word alignment and then incorporates them into the translation system for further steps. Although it is a pretty important step in training procedure, an word alignment process often has practical concerns with agglutinative languages. We consider an approach, which is a step towards an improved statistical translation model that incorporates morphological information and has better translation performance. Our goal is to present a statistical model of the morphology dependent procedure, which was evaluated over the Kazakh-English language pair and has obtained an improved BLEU score over state-of-the-art models.
机译:单词对齐在统计机器翻译系统的培训中起着重要作用。从哈萨克语-英语平行语料库中收集句子后,我们提出一种在短语级别上优化词对齐的技术。估计技术从单词对齐中提取短语对,然后将其合并到翻译系统中以用于进一步的步骤。尽管这是培训过程中非常重要的一步,但单词对齐过程通常会涉及凝集性语言。我们考虑一种方法,这是朝着改进的统计翻译模型迈进的一步,该模型整合了形态信息并具有更好的翻译性能。我们的目标是提供一种与形态有关的过程的统计模型,该模型在哈萨克语-英语对上进行了评估,并且与最新模型相比获得了改进的BLEU分数。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号