【24h】

HEADWATER CONTROL: Despatches from the Research Front

机译:耳机控制:研究前沿的调度

获取原文
获取原文并翻译 | 示例

摘要

Headwater Control is about integrated land management. Effective headwater management requires better information, better technologies, better management structures, change in land husbandry and direct engineering interventions. Headwater regions often waste their resources. In Jammu and Kashmir, 40% (and in South Africa and Iranian Azerbaijan 60%) of the water resource runs to waste. Azerbaijan's planners believe that 25% could be collected for agriculture. In Xinjiang, China, by contrast, over-utilisation of the headwater resources in the Tarim Basin has caused desertification and large-scale farmland abandonment downstream. Better systems of water resource accounting are required. Eventually, the Lesotho Highlands Water Project may generate 25% of that nation's foreign exchange earnings. Acidification is linked to the human impact in headwaters. Previously, pH was controlled by climatic, lithologic, edaphic and biologic factors. New Japanese work stresses the role of the weathered layer beneath the soils of tropical steeplands in moderating the hydrologic impacts of forestation and acid precipitation. Elsewhere, pollution plays a critical role, especially the deposition of air pollutants. Time trends of NO_3 and SO_4~(2-) deposition may be dwarfed by natural geographical variations within a small basin. However, the chief agencies are decreasingly SO_4~(2-) ", increasingly NO_3 and more generally agricultural chemicals and other human wastes. Riverine microbial biofilms act as both sinks and sources for pollutants. In Canada, effective prevention of non-point-source pollution required a compromise between the net welfare of farmers, the wider non-farm community and the environment. Better systems of water quality management are required. The riparian zone is often counted critical. Fragmentation of both the riparian zone and its management rank among the most serious challenges for land managers. However, while restoring riparian vegetation reduces sediment loads and increases the biodiversity of affected rivers, it may not mitigate acidification. Mathematical models for predicting runoff from alpine catchments are evaluated. USDAHL with GIS, HEC-1 and RUNOFF-5 are generally satisfactory and HYRROM is useful for engineering. Empirical studies show that forests moderate hydrological and erosional processes. In Serbia, 15-years study in steep headwater basins finds that forest covers >70%, rather than <49%, yield smaller flood peaks and provide a more sustained flow (dry for 13.4 days/year-1 vs. 121.4 or more). In Japan's mountain headwaters, reforestation reduces water losses. Here, increased evapotranspiration is compensated by decreased deep seepage. In Alaska, tree roots prove as important as pore water pressure in regulating landsliding on steep slopes with shallow soils. Soil erosion remains a major problem. In Brazil, regional estimates of soil loss were a seventh of those due to rill and gully erosion in fields under conventional tillage. In Lithuania, soil depth declines ranging from 0.12 - 0.94 m and soil fertility declines ranging from 22% to 63% are reported. In the Himalaya, soil nutrient deficiencies are widespread and agricultural inputs are inadequate to the maintenance of fertility levels. Overgrazing, forest conversion, the harvesting of wild medicinal herbs, road construction and mining cause soil degradation and permit ecological invasion by alien weed species. The situation of the headwater farmer, struggling with land degradation, contrasts with that of the padi farmer downstream, whose fields are enriched with soils and nutrients lost from the uplands. Elsewhere, sediment and agrochemical pollution causes problems downstream. In Canada, conservation tillage proves best pollution control practice for both the farmers and non-farm community. In Brazil, rill and gully erosion was eliminated by the adoption of no-till agriculture. In Lithuania, returning steeper slopes to pasture reduced soil losses to zero
机译:上游水源控制与土地综合管理有关。有效的源头水管理需要更好的信息,更好的技术,更好的管理结构,土地管理的变化和直接的工程干预。上游地区经常浪费资源。在查mu和克什米尔,40%的水资源(以及南非和伊朗的阿塞拜疆60%)的水资源流失了。阿塞拜疆的规划者认为,可以收集25%的土地用于农业。相比之下,在中国新疆,塔里木盆地上游水源的过度利用导致了下游的荒漠化和大规模农田的放弃。需要更好的水资源核算系统。最终,莱索托高地水利项目可能产生该国25%的外汇收入。酸化与人类对上游源头的影响有关。以前,pH是由气候,岩性,水生和生物因素控制的。日本的新工作强调了热带陡坡土壤下的风化层在减轻造林和酸沉降对水文影响方面的作用。在其他地方,污染起着至关重要的作用,尤其是空气污染物的沉积。 NO_3和SO_4〜(2-)沉积的时间趋势可能与小盆地内自然地理变化相形见.。但是,主要机构的SO_4〜(2-)“减少,NO_3越来越多,更普遍的是农用化学品和其他人类废物。河滨微生物生物膜既是污染物的汇源,又是污染物的源头。在加拿大,有效预防面源污染污染需要在农民的净福利,更广泛的非农业社区和环境之间做出折衷,需要更好的水质管理体系,河岸带常常被认为是至关重要的,河岸带及其管理的支离破碎在土地管理者面临的最严峻挑战;然而,虽然恢复河岸植被减少了沉积物负荷并增加了受影响河流的生物多样性,但可能无法缓解酸化作用,评估了用于预测高山流域径流的数学模型USDAHL,GIS,HEC-1和RUNOFF -5一般令人满意,HYRROM可用于工程,经验研究表明,森林适度的水文d侵蚀过程。在塞尔维亚,对陡峭的水源流域进行的15年研究发现,森林覆盖率> 70%,而不是<49%,产生的洪峰更小,流量更持久(第一年为13.4天的干旱,而121.4天或更长时间) 。在日本的山区上游,重新造林可以减少水的流失。在这里,增加的蒸散量通过减少的深层渗透来补偿。在阿拉斯加,树根被证明与孔隙水压力一样重要,可以调节土壤浅层的陡坡上的滑坡。水土流失仍然是一个主要问题。在巴西,对传统耕作的田间土壤流失的估计数是由于小河和沟壑侵蚀造成的损失的七分之一。在立陶宛,据报道土壤深度下降了0.12-0.94 m,土壤肥力下降了22%至63%。在喜马拉雅山,土壤养分缺乏十分普遍,农业投入不足以维持肥力水平。过度放牧,森林改建,野生药材的收获,道路建设和采矿导致土壤退化,并允许外来杂草物种对生态系统造成入侵。与土地退化作斗争的源头农民的状况与下游的帕迪农民的状况形成鲜明对比,后者的土地上充斥着从高地流失的土壤和养分。在其他地方,沉积物和农药污染会在下游造成问题。在加拿大,保护性耕作证明对农民和非农业社区都是最佳的污染控制实践。在巴西,采用免耕农业消除了水土流失。在立陶宛,使陡峭的斜坡返回牧场将土壤流失减少至零

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号