首页> 外文会议>Multiple classifier systems >Ensemble Strategies for Classifying Hyperspectral Remote Sensing Data
【24h】

Ensemble Strategies for Classifying Hyperspectral Remote Sensing Data

机译:综合策略对高光谱遥感数据进行分类

获取原文
获取原文并翻译 | 示例

摘要

The classification of hyperspectral imagery, using multiple classifier systems is discussed and an SVM-based ensemble is introduced. The data set is separated into separate feature subsets using the correlation between the different spectral bands as a criterion. Afterwards, each source is classified separately by an SVM classifier. Finally, the different outputs are used as inputs for final decision fusion that is based on an additional SVM classifier. The results using the proposed strategy are compared to classification results achieved by a single SVM and other well known classifier ensembles, such as random forests, boosting and bagging.
机译:讨论了使用多个分类器系统对高光谱图像进行分类,并介绍了基于SVM的集成。使用不同光谱带之间的相关性作为标准,将数据集分为单独的特征子集。之后,每个源由SVM分类器分别分类。最后,将不同的输出用作基于附加SVM分类器的最终决策融合的输入。使用提议的策略将结果与单个SVM和其他众所周知的分类器集成(例如随机森林,增强和装袋)获得的分类结果进行比较。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号