首页> 外文会议>Multiple classifier systems >Hierarchical Ensemble Support Cluster Machine
【24h】

Hierarchical Ensemble Support Cluster Machine

机译:分层集成支持群集计算机

获取原文
获取原文并翻译 | 示例

摘要

In real applications, a large-scale data set is usually available for a classifier design. The recently proposed Support Cluster Machine (SCM) can deal with such a problem, where data representation is firstly changed with a mixture model such that the classifier works on a component level instead of individual data points. However, it is difficult to decide the proper number of components for designing a successful SCM classifier. In the paper, a hierarchical ensemble SCM (HESCM) is proposed to address the problem. Initially, a hierarchical mixture modeling strategy is used to obtain different levels of mixture models from fine representation to coarse representation. Then, the mixture model in each level is exploited for training SCM. Finally, the learnt models from all the levels are integrated to obtain an ensemble result. Experiments carried on two real large-scale data sets validate the effectiveness of the proposed approach, increasing classification accuracy and stability as well as significantly reducing computational and spatial complexities of a supervised classifier compared to the state-of-the-art classifiers.
机译:在实际应用中,大型数据集通常可用于分类器设计。最近提出的支持集群机器(SCM)可以解决这样的问题,首先使用混合模型更改数据表示,以便分类器在组件级别而不是单个数据点上工作。但是,难以确定用于设计成功的SCM分类器的组件的正确数量。在本文中,提出了一种层次集成的SCM(HESCM)来解决这个问题。最初,使用分层混合建模策略来获得从精细表示到粗略表示的不同级别的混合模型。然后,利用每个级别的混合模型来训练SCM。最后,将所有级别的学习模型进行集成以获得整体结果。与两个最新的分类器相比,在两个真实的大规模数据集上进行的实验验证了该方法的有效性,提高了分类精度和稳定性,并显着降低了监督分类器的计算和空间复杂度。

著录项

  • 来源
    《Multiple classifier systems》|2009年|252-261|共10页
  • 会议地点 Reykjavik(IS);Reykjavik(IS)
  • 作者单位

    School of Computer Science, Fudan University, Shanghai, China;

    School of Computer Science, Fudan University, Shanghai, China;

    School of Computer Science, Fudan University, Shanghai, China;

    Faculty of Electrical and Computer Engineering, University of Iceland, Iceland;

    School of Computer Science, Fudan University, Shanghai, China;

  • 会议组织
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 TP274.3;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号