首页> 外文会议>Multiple classifier systems >The Bias Variance Trade-Off in Bootstrapped Error Correcting Output Code Ensembles
【24h】

The Bias Variance Trade-Off in Bootstrapped Error Correcting Output Code Ensembles

机译:自举错误校正输出代码集合中的偏差方差折衷

获取原文
获取原文并翻译 | 示例

摘要

By performing experiments on publicly available multi-class datasets we examine the effect of bootstrapping on the bias/variance behaviour of error-correcting output code ensembles. We present evidence to show that the general trend is for bootstrapping to reduce variance but to slightly increase bias error. This generally leads to an improvement in the lowest attainable ensemble error, however this is not always the case and bootstrapping appears to be most useful on datasets where the non-bootstrapped ensemble classifier is prone to overfitting.
机译:通过对公开可用的多类数据集进行实验,我们检查了自举对纠错输出代码集合的偏差/方差行为的影响。我们提供的证据表明,总体趋势是自举以减少方差,但会稍微增加偏差误差。通常,这会导致最低的可实现合奏误差得到改善,但是,并非总是如此,自举似乎在非自举合奏分类器易于过度拟合的数据集上最有用。

著录项

  • 来源
    《Multiple classifier systems》|2009年|1-10|共10页
  • 会议地点 Reykjavik(IS);Reykjavik(IS)
  • 作者单位

    Centre for Vision, Speech and Signal Processing, University of Surrey, Guildford, Surrey GU2 7XH, UK;

    Centre for Vision, Speech and Signal Processing, University of Surrey, Guildford, Surrey GU2 7XH, UK;

  • 会议组织
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 TP274.3;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号