首页> 外文会议>Multiple classifier systems >Disturbing Neighbors Ensembles for Linear SVM
【24h】

Disturbing Neighbors Ensembles for Linear SVM

机译:线性SVM的干扰邻居集合

获取原文
获取原文并翻译 | 示例

摘要

Ensembles need their base classifiers do not always agree for any prediction (diverse base classifiers). Disturbing Neighbors (DN) is a method for improving the diversity of the base classifiers of any ensemble algorithm. DN builds for each base classifier a set of extra features based on a 1 -Nearest Neighbors (1-NN) output. These 1-NN are built using a small subset of randomly selected instances from the training dataset. DN has already been proved successfully on unstable base classifiers (i.e. decision trees). This paper presents an experimental validation on 62 UCI datasets for standard ensemble methods using Support Vector Machines (SVM) with a linear kernel as base classifiers. SVMs are very stable, so it is hard to increase their diversity when they belong to an ensemble. However, experiments will show that DN usually improves ensemble accuracy and base classifiers diversity.
机译:合奏需要其基本分类器不一定总是对任何预测都同意(不同的基本分类器)。干扰邻居(DN)是一种用于改善任何集成算法的基本分类器多样性的方法。 DN基于1-最近邻居(1-NN)输出为每个基本分类器构建一组附加功能。这些1-NN是使用训练数据集中随机选择的实例的一小部分构建的。 DN已在不稳定的基础分类器(即决策树)上被成功证明。本文使用线性核作为基础分类器的支持向量机(SVM),对62个UCI数据集的标准集成方法进行了实验验证。 SVM非常稳定,因此在属于整体时很难增加其多样性。然而,实验将表明DN通常可以提高整体准确性和基本分类器的多样性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号