首页> 外文会议>International conference on multi-functional materials and structures >Modeling and optimization of nanomechanics of diamond-like carbon by MPCVD using response surface methodology
【24h】

Modeling and optimization of nanomechanics of diamond-like carbon by MPCVD using response surface methodology

机译:响应面法通过MPCVD对类金刚石碳纳米力学进行建模和优化

获取原文
获取外文期刊封面目录资料

摘要

Diamond-like carbon (DLC) films have attracted great interest due to their outstanding mechanical, biocompatibility, thermal, optical and electrical properties. The DLC films can be produced by microwave plasma chemical vapor deposition (MPCVD) using Argon, methane and hydrogen mixed gases. The film properties depend strongly on the experimental parameters such as substrate temperatures; microwave power, process pressure and hydrogen concentration (H2/Ar+CH4+H2). In this study, the properties of nanomechanics of DLC films with various experimental parameters are firstly discussed which include hardness and Young’s modulus characterizing by depth-sensing nanoindentation technique. The nanoindentation is an excellent method for measuring nanomechanical properties of both bulk and thin films. The probe was conducted using a Berkovich diamond tip. To find the optimized process parameters, the statistical and mathematical response surface methodology (RSM) is used to model and analyze the effect of substrate temperature (T), microwave power (W), process pressure (P) and hydrogen concentration (H) on the properties of nanomechanics of DLC films. The central composite experimental design (CCD) is used to evaluate the interaction parametric effects of multiple experimental variables on process response (hardness and Young’s modulus). The predictive quadratic model proposed herein considering the analysis of variance (ANOVA) are proved to fit and predict values of the hardness and Young’s modulus close to those readings recorded experimentally. The most significant influential factors for maximizing the hardness and Young’s modulus have been identified from the ANOVA table. The RSM technique is demonstrated to be a powerful tool in exploration of the manufacturing parameters space of complex physical process of DLC films deposition by MPCVD.
机译:类金刚石碳(DLC)膜由于其出色的机械,生物相容性,热,光学和电特性而引起了人们的极大兴趣。可以通过使用氩气,甲烷和氢气混合气体的微波等离子体化学气相沉积(MPCVD)来生产DLC膜。膜的性能在很大程度上取决于实验参数,例如基材温度。微波功率,过程压力和氢气浓度(H2 / Ar + CH4 + H2)。在这项研究中,首先讨论了具有各种实验参数的DLC薄膜的纳米力学性能,包括通过深度传感纳米压痕技术表征的硬度和杨氏模量。纳米压痕是测量块状和薄膜的纳米机械性能的极好方法。使用Berkovich金刚石尖端进行探针。为了找到优化的工艺参数,使用统计和数学响应表面方法(RSM)来建模和分析衬底温度(T),微波功率(W),工艺压力(P)和氢浓度(H)对温度的影响。 DLC薄膜的纳米力学性能。中央复合实验设计(CCD)用于评估多个实验变量对过程响应(硬度和杨氏模量)的相互作用参数影响。事实证明,本文提出的考虑方差分析(ANOVA)的预测二次模型可以拟合和预测硬度和杨氏模量的值,使其接近实验记录的读数。已从ANOVA表中确定了使硬度和杨氏模量最大化的最重要的影响因素。 RSM技术被证明是探索通过MPCVD沉积DLC膜的复杂物理过程的制造参数空间的有力工具。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号