首页> 外文会议>Modeling and Simulation for Defense Systems and Applications X >An Evaluation of Algorithms and Methods for Compressing and Decompressing Atmospheric Transmission Data for Use in At-Sensor Measurements
【24h】

An Evaluation of Algorithms and Methods for Compressing and Decompressing Atmospheric Transmission Data for Use in At-Sensor Measurements

机译:用于传感器测量的压缩和解压缩大气传输数据的算法和方法的评估

获取原文
获取原文并翻译 | 示例

摘要

In this paper, we describe the use of various methods of one-dimensional spectral compression by variable selection as well as principal component analysis (PCA) for compressing multi-dimensional sets of spectral data. We have examined methods of variable selection such as wavelength spacing, spectral derivatives, and spectral integration error. After variable selection, reduced transmission spectra must be decompressed for use. Here we examine various methods of interpolation, e.g., linear, cubic spline and piecewise cubic Hermite interpolating polynomial (PCHIP) to recover the spectra prior to estimating at-sensor radiance. Finally, we compressed multi-dimensional sets of spectral transmittance data from moderate resolution atmospheric transmission (MODTRAN) data using PCA. PCA seeks to find a set of basis spectra (vectors) that model the variance of a data matrix in a linear additive sense. Although MODTRAN data are intricate and are used in nonlinear modeling, their base spectra can be reasonably modeled using PCA yielding excellent results in terms of spectral reconstruction and estimation of at-sensor radiance. The major finding of this work is that PCA can be implemented to compress MODTRAN data with great effect, reducing file size, access time and computational burden while producing high-quality transmission spectra for a given set of input conditions.
机译:在本文中,我们描述了通过变量选择以及主成分分析(PCA)来压缩多维数据集的各种一维频谱压缩方法。我们已经研究了变量选择的方法,例如波长间隔,光谱导数和光谱积分误差。选择变量后,必须解压缩透射光谱以供使用。在这里,我们检查了各种内插方法,例如线性,三次样条和分段三次Hermite内插多项式(PCHIP),以在估计传感器辐射之前恢复光谱。最后,我们使用PCA从中等分辨率的大气传输(MODTRAN)数据压缩了光谱透射率数据的多维集。 PCA寻求找到一组基础光谱(矢量),这些基础光谱以线性累加意义建模数据矩阵的方差。尽管MODTRAN数据是复杂的并且用于非线性建模,但是可以使用PCA对它们的基本光谱进行合理建模,从而在光谱重建和传感器辐射亮度估计方面产生出色的结果。这项工作的主要发现是PCA可以有效地压缩MODTRAN数据,减少文件大小,访问时间和计算负担,同时针对给定的一组输入条件产生高质量的传输光谱。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号