【24h】

Network cooperation for client-ap association optimization

机译:网络合作,实现客户端与客户端的关联优化

获取原文
获取原文并翻译 | 示例

摘要

In a WiFi deployment with multiple access points, optimizing the way each client selects an AP from amongst the available choices, has a significant impact on the realized performance. When two or more such multi-AP networks are deployed in the same region, APs from different networks can cause severe interference to one another. In this paper, we study how inter-network interference effects the intra-network association optimization and propose a cooperative optimization scheme to mitigate the interference. We model the interference between multiple overlapping WiFi deployments, determine the information that networks need to share, and formulate a non-linear program that each network can solve for optimal proportional-fair association of clients to APs. Assuming a ‘sum of log rates’ utility function, we apply a known 2+ε approximation algorithm for solving the NP-hard problem in polynomial time. We evaluate the performance gain through large-scale simulations with multiple overlapping networks, each consisting of 15–35 access points and 50–250 clients in a 0.5×0.5 sq.km. urban setting. Results show an average of 150% improvement in random deployments and upto 7× improvements in clustered deployments for the least-performing client throughputs with modest reductions in the mean client throughputs.
机译:在具有多个接入点的WiFi部署中,优化每个客户端从可用选项中选择AP的方式,会对实现的性能产生重大影响。当在同一区域中部署两个或多个这样的多AP网络时,来自不同网络的AP可能会对彼此造成严重干扰。在本文中,我们研究了网络间干扰如何影响网络内关联优化,并提出了一种协作优化方案来减轻这种干扰。我们对多个重叠WiFi部署之间的干扰进行建模,确定网络需要共享的信息,并制定一个非线性程序,每个网络可以解决该程序,以实现客户端与AP的最佳比例公平关联。假设“对数速率之和”效用函数,我们应用已知的2 +ε近似算法来解决多项式时间内的NP-hard问题。我们通过具有多个重叠网络的大规模仿真评估性能提升,每个重叠网络由0.5-0.5平方公里中的15-35个接入点和50-250个客户端组成。城市环境。结果显示,对于性能最低的客户端吞吐量,随机部署平均可提高150%,而在集群部署中,则可提高7倍,而平均客户端吞吐量却会适度降低。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号