首页> 外文会议>Modeling, Analysis amp; Simulation of Computer and Telecommunication Systems, 2009. MASCOTS '09 >Real-time performance modeling for adaptive software systems with multi-class workload
【24h】

Real-time performance modeling for adaptive software systems with multi-class workload

机译:具有多类工作负载的自适应软件系统的实时性能建模

获取原文

摘要

Modern, adaptive software systems must often adjust or reconfigure their architecture in order to respond to continuous changes in their execution environment. Efficient autonomic control in such systems is highly dependent on the accuracy of their representative performance model. In this paper, we are concerned with real-time estimation of a performance model for adaptive software systems that process multiple classes of transactional workload. Based on an open queueing network model and an Extended Kalman Filter (EKF), experiments in this work show that: 1) the model parameter estimates converge to the actual value very slowly when the variation in incoming workload is very low, 2) the estimates fail to converge quickly to the new value when there is a step-change caused by adaptive reconfiguration of the actual software parameters. We therefore propose a modified EKF design in which the measurement model is augmented with a set of constraints based on past measurement values. Experiments demonstrate the effectiveness of our approach that leads to significant improvement in convergence in the two cases.
机译:现代的自适应软件系统必须经常调整或重新配置其体系结构,以响应其执行环境中的不断变化。在此类系统中,有效的自主控制高度依赖于其代表性性能模型的准确性。在本文中,我们关注用于处理多类事务性工作负载的自适应软件系统的性能模型的实时估计。基于开放式排队网络模型和扩展卡尔曼滤波器(EKF),这项工作的实验表明:1)当传入工作负载的变化非常低时,模型参数估计值会非常缓慢地收敛到实际值,2)估计值当由于实际软件参数的自适应重新配置而导致出现阶跃变化时,将无法快速收敛到新值。因此,我们提出了一种改进的EKF设计,其中基于过去的测量值使用一组约束来扩展测量模型。实验证明了我们的方法的有效性,该方法可在两种情况下显着改善收敛。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号